是的,不同的策略迭代方法可以收敛到不同的最优策略。策略迭代是一种通过交替进行策略评估和策略改进的方法来找到最优策略。不同的评估和改进策略的方式可能会导致不同的最优策略。
下面是一个简单的代码示例,展示了两种不同的策略迭代方法如何收敛到不同的最优策略。
import numpy as np
# 定义一个简单的环境,包含两个状态和两个动作
num_states = 2
num_actions = 2
# 定义状态转移概率矩阵
transition_probs = np.array([
[[0.9, 0.1], [0.2, 0.8]], # 状态0下,动作0和1的转移概率
[[0.6, 0.4], [0.3, 0.7]] # 状态1下,动作0和1的转移概率
])
# 定义奖励矩阵
rewards = np.array([
[[1, 0], [0, 0]], # 状态0下,动作0和1的奖励
[[0, 0], [0, 1]] # 状态1下,动作0和1的奖励
])
# 策略迭代方法1:值迭代
def value_iteration():
# 初始化值函数
values = np.zeros(num_states)
# 定义折扣因子
discount_factor = 0.9
# 定义值函数收敛的阈值
theta = 0.0001
while True:
delta = 0
for state in range(num_states):
v = values[state]
# 计算每个状态的最优动作的值函数
q_values = np.zeros(num_actions)
for action in range(num_actions):
q_values[action] = np.sum(transition_probs[state, action] * (rewards[state, action] + discount_factor * values))
values[state] = np.max(q_values)
delta = max(delta, np.abs(v - values[state]))
if delta < theta:
break
# 根据最优值函数计算最优策略
policy = np.zeros(num_states, dtype=int)
for state in range(num_states):
q_values = np.zeros(num_actions)
for action in range(num_actions):
q_values[action] = np.sum(transition_probs[state, action] * (rewards[state, action] + discount_factor * values))
policy[state] = np.argmax(q_values)
return policy
# 策略迭代方法2:策略迭代
def policy_iteration():
# 初始化策略
policy = np.zeros(num_states, dtype=int)
# 定义折扣因子
discount_factor = 0.9
while True:
# 策略评估
values = np.zeros(num_states)
# 定义值函数收敛的阈值
theta = 0.0001
while True:
delta = 0
for state in range(num_states):
v = values[state]
action = policy[state]
# 计算每个状态的值函数
values[state] = np.sum(transition_probs[state, action] * (rewards[state, action] + discount_factor * values))
delta = max(delta, np.abs(v - values[state]))
if delta < theta:
break
# 策略改进
policy_stable = True
for state in range(num_states):
old_action = policy[state]
q_values = np.zeros(num_actions)
for action in range(num_actions):
q_values[action] = np.sum(transition_probs[state, action] * (rewards[state, action] + discount_factor * values))
policy[state] = np.argmax(q_values)
if old_action != policy[state]:
policy_stable = False
if policy_stable:
break
return policy
# 使用值迭代方法找到最优策
下一篇:不同的测试有不同的工作目录