【论文速递】CASE 2022 - EventGraph: 将事件抽取当作语义图解析任务
创始人
2024-05-29 11:28:42
0

【论文速递】CASE 2022 - EventGraph: 将事件抽取当作语义图解析任务

【论文原文】:https://aclanthology.org/2022.case-1.2.pdf

【作者信息】:Huiling You, David Samuel, Samia Touileb, and Lilja Øvrelid

论文:https://aclanthology.org/2022.case-1.2.pdf
代码:https://github.com/huiling-y/EventGraph

博主关键词:事件抽取、语义图解析、AMR

推荐论文:http://t.csdn.cn/FXooE、http://t.csdn.cn/emLEW

摘要

事件抽取涉及到事件触发词和相应事件论元的检测和抽取。现有系统经常将事件抽取分解为多个子任务,而不考虑它们之间可能的交互。在本文中,我们提出了EventGraph,这是一个用于事件抽取的联合框架,它将事件编码为图。我们将事件触发词和论元表示为语义图中的节点。事件抽取因此成为一个图解析问题,它具有以下优点:1)事件检测和论元抽取联合进行;2)从一段文本中检测和抽取多个事件;3)捕获事件论元和触发词之间的复杂交互。在ACE2005上的实验结果表明,我们的模型与现有的系统相比具有竞争力,并且在论元抽取方面有了很大的改进。此外,我们从ACE2005创建了两个新的数据集,其中保留了事件论元的整个文本跨度,而不仅仅是头部单词。

1、简介

事件抽取旨在根据预定义的事件本体,将非结构化文本中的事件相关信息抽取为结构化形式(即触发词和论元)(Ahn, 2006;Doddington et al, 2004)。在这些类型的本体中,事件由事件触发词来表示,并由一组预定义的论元类型组成。图1显示了一个包含两个事件的句子示例,一个由“friendly-fire”触发的Attack事件和一个由“died”触发的Die事件;这两个事件共享相同的论元,但每个事件在特定事件中扮演不同的角色。例如,U.S.是死亡事件中的Agent,但在Attack事件中扮演Attacker的角色。

与将事件抽取划分为独立的子任务相反,我们利用语义依赖分析的最新进展(Dozat和Manning, 2018;Samuel和Straka, 2020),并开发了一个端到端事件图解析器,称为EventGraph。我们采用直观的图形编码来表示单个事件图中某段文本的事件提及,并直接从原始文本生成这些事件图。我们在ACE2005 (LDC2006T06)上评估我们的EventGraph系统。我们的模型与最先进的模型取得了具有竞争力的结果,并大大提高了事件论元抽取的结果。这项工作的主要贡献是:

  1. 我们提出EventGraph,这是一个文本到事件的框架,它将事件抽取作为语义图解析来解决。该模型不依赖于任何特定于语言的特性或特定于事件的本体,因此可以很容易地应用于新的语言和新的数据集。
  2. 我们设计了一种直观的图编码方法来表示单个事件图中的事件结构。
  3. 我们的方法的通用性允许轻松解码完整的触发词和论元提及。我们从ACE2005中创建了两个新颖且更具挑战性的数据集,并提供了相应的基准测试结果。

2、方法

EventGraph是PERIN (Samuel和Straka, 2020)的改编,PERIN是用于文本到图解析的通用排列不变框架。给定事件图的“标记边缘”编码,我们通过定制PERIN的模块来创建EventGraph,如图3所示,其中包含三个分类器,分别用于生成节点、锚点和边。每个输入序列由EventGraph的四个模块处理,生成最终的结构化表示。

编码器:我们使用large XLM-R (Conneau et al, 2020)作为编码器,以获得输入序列的上下文化表示;每个token通过在子词上学习的子词注意层获得上下文嵌入。

查询生成(query generator):我们使用线性转换层将每个嵌入的token映射到nnn个查询。

解码器:解码器是一个Transformer编码器层的堆叠(Vaswani等人,2017),没有位置编码,这是置换不变的(非自回归);解码器通过建模query之间的相互依赖关系来处理和增强每个token的query。

解码头:它由三个分类器组成:a)节点分类器是一个线性分类器,通过对每个token的增强查询进行分类来预测节点的存在;由于为每个token生成多个查询,单个token可以生成多个节点;b)anchor biaffine分类器(Dozat和Manning, 2017)在每个token的增强查询和上下文嵌入之间使用deep biaffine attention,将预测的节点映射到表面token;C)edge biaffine分类器使用两个deep biaffine attention模块来处理生成的节点,并预测一对节点与边缘标签之间的边缘是否存在。

给定一段文本,EventGraph生成相应的图,从节点和边中抽取事件提及的结构化信息并不费力。

3、结果

【论文速递 | 精选】

论坛地址:https://bbs.csdn.net/forums/paper

相关内容

热门资讯

保存时出现了1个错误,导致这篇... 当保存文章时出现错误时,可以通过以下步骤解决问题:查看错误信息:查看错误提示信息可以帮助我们了解具体...
汇川伺服电机位置控制模式参数配... 1. 基本控制参数设置 1)设置位置控制模式   2)绝对值位置线性模...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
表格中数据未显示 当表格中的数据未显示时,可能是由于以下几个原因导致的:HTML代码问题:检查表格的HTML代码是否正...
本地主机上的图像未显示 问题描述:在本地主机上显示图像时,图像未能正常显示。解决方法:以下是一些可能的解决方法,具体取决于问...
不一致的条件格式 要解决不一致的条件格式问题,可以按照以下步骤进行:确定条件格式的规则:首先,需要明确条件格式的规则是...
表格列调整大小出现问题 问题描述:表格列调整大小出现问题,无法正常调整列宽。解决方法:检查表格的布局方式是否正确。确保表格使...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...