不同数据点的权重?(从头开始逻辑回归)
创始人
2025-01-09 17:07:25
0

在逻辑回归模型中,数据点的权重可以通过设置样本权重来实现。下面是一个从头开始实现逻辑回归的示例代码,包括设置不同数据点的权重。

import numpy as np
from scipy.optimize import minimize

# 定义逻辑回归函数
def logistic_regression(weights, X, y):
    z = np.dot(X, weights)
    predictions = 1 / (1 + np.exp(-z))
    loss = -np.mean(y * np.log(predictions) + (1-y) * np.log(1-predictions))
    return loss

# 定义逻辑回归梯度函数
def logistic_regression_gradient(weights, X, y):
    z = np.dot(X, weights)
    predictions = 1 / (1 + np.exp(-z))
    gradient = np.dot(X.T, (predictions - y)) / len(y)
    return gradient

# 定义优化器函数
def optimize_weights(X, y, initial_weights):
    result = minimize(logistic_regression, initial_weights, args=(X, y), method='BFGS', jac=logistic_regression_gradient)
    return result.x

# 生成示例数据
np.random.seed(0)
X = np.random.randn(100, 2)
y = np.random.randint(0, 2, 100)

# 设置不同数据点的权重
weights = np.ones(len(y))  # 默认权重为1
weights[y == 1] = 2  # 将类别为1的数据点权重设置为2

# 优化权重
initial_weights = np.zeros(X.shape[1])
optimized_weights = optimize_weights(X, y, initial_weights)

print("优化后的权重:", optimized_weights)

在上述代码中,我们通过weights数组设置了不同数据点的权重。默认情况下,所有数据点的权重都为1,然后我们将类别为1的数据点的权重设置为2。通过将带有不同权重的样本传递给优化器函数optimize_weights,可以得到相应的优化后的权重。在这个例子中,我们使用了BFGS方法进行优化,也可以根据具体情况选择其他优化方法。

相关内容

热门资讯

保存时出现了1个错误,导致这篇... 当保存文章时出现错误时,可以通过以下步骤解决问题:查看错误信息:查看错误提示信息可以帮助我们了解具体...
汇川伺服电机位置控制模式参数配... 1. 基本控制参数设置 1)设置位置控制模式   2)绝对值位置线性模...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
本地主机上的图像未显示 问题描述:在本地主机上显示图像时,图像未能正常显示。解决方法:以下是一些可能的解决方法,具体取决于问...
不一致的条件格式 要解决不一致的条件格式问题,可以按照以下步骤进行:确定条件格式的规则:首先,需要明确条件格式的规则是...
表格列调整大小出现问题 问题描述:表格列调整大小出现问题,无法正常调整列宽。解决方法:检查表格的布局方式是否正确。确保表格使...
表格中数据未显示 当表格中的数据未显示时,可能是由于以下几个原因导致的:HTML代码问题:检查表格的HTML代码是否正...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...