当使用QAT(Quantization-Aware Training)训练的Keras模型进行训练时,如果遇到不支持的层,可以通过以下方法进行解决:
tf.keras.layers.BatchNormalization
替换为自定义层CustomBatchNormalization
:import tensorflow as tf
from tensorflow.keras.layers import Layer
class CustomBatchNormalization(Layer):
def __init__(self, momentum=0.99, epsilon=0.001, **kwargs):
super(CustomBatchNormalization, self).__init__(**kwargs)
self.momentum = momentum
self.epsilon = epsilon
def build(self, input_shape):
self.gamma = self.add_weight(name='gamma', shape=(input_shape[-1],),
initializer='ones', trainable=True)
self.beta = self.add_weight(name='beta', shape=(input_shape[-1],),
initializer='zeros', trainable=True)
self.moving_mean = self.add_weight(name='moving_mean', shape=(input_shape[-1],),
initializer='zeros', trainable=False)
self.moving_variance = self.add_weight(name='moving_variance', shape=(input_shape[-1],),
initializer='ones', trainable=False)
def call(self, inputs, training=None):
if training:
mean, variance = tf.nn.moments(inputs, axes=[0])
self.moving_mean.assign_sub((1 - self.momentum) * (self.moving_mean - mean))
self.moving_variance.assign_sub((1 - self.momentum) * (self.moving_variance - variance))
return tf.nn.batch_normalization(inputs, mean, variance, self.beta, self.gamma, self.epsilon)
else:
return tf.nn.batch_normalization(inputs, self.moving_mean, self.moving_variance, self.beta, self.gamma, self.epsilon)
tf.keras.layers.BatchNormalization
层:import tensorflow as tf
from tensorflow.keras.layers import BatchNormalization
model = tf.keras.Sequential([
# ...
BatchNormalization(trainable=False),
# ...
])
这样,在QAT训练过程中,BatchNormalization
层的权重将不会被更新。
通过上述方法,可以解决不支持层的问题,并继续使用QAT训练Keras模型。
上一篇:不支持CAT产品的ARCore
下一篇:不支持插入复合类型的数组类型