bzm并行控制器-生成父样本聚合而不是返回最大值。
创始人
2025-01-13 00:00:53
0

以下是一个使用bzm并行控制器生成父样本聚合的示例代码:

import numpy as np
from scipy.stats import mode
from sklearn.datasets import make_classification
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

class BzmParallelController(BaggingClassifier):
    def __init__(self, base_estimator=None, n_estimators=10, max_samples=1.0, bootstrap=True, random_state=None, parent_aggregation='mode'):
        super().__init__(base_estimator, n_estimators, max_samples, bootstrap, random_state)
        self.parent_aggregation = parent_aggregation
    
    def _parallel_build_estimators(self, n_estimators, ensemble, X, y, max_samples, bootstrap, random_state):
        seeds = np.random.randint(np.iinfo(np.int32).max, size=n_estimators)
        trees = []
        
        for i in range(n_estimators):
            estimator = self._make_estimator(append=False, random_state=seeds[i])
            if bootstrap:
                indices = np.random.randint(0, X.shape[0], max_samples)
            else:
                indices = np.arange(X.shape[0])
            
            estimator.fit(X[indices], y[indices])
            trees.append(estimator)
        
        ensemble.extend(trees)
    
    def _aggregate_parent_samples(self, predictions):
        if self.parent_aggregation == 'mode':
            return mode(predictions, axis=0)[0].flatten()
        else:
            return np.mean(predictions, axis=0)
    
    def _do_predict(self, X):
        predictions = self._parallel_predict_proba(X)
        return self._aggregate_parent_samples(predictions)

使用示例:

# 生成示例数据集
X, y = make_classification(n_samples=100, n_features=10, random_state=42)

# 创建并行控制器
controller = BzmParallelController(base_estimator=DecisionTreeClassifier(), n_estimators=5, max_samples=0.8, bootstrap=True, random_state=42, parent_aggregation='mode')

# 拟合数据
controller.fit(X, y)

# 预测结果
predictions = controller.predict(X)
print(predictions)

在这个示例中,我们创建了一个名为BzmParallelController的类,它继承自BaggingClassifier。我们重写了_parallel_build_estimators方法来生成并行的决策树估计器,并重写了_do_predict方法来聚合父样本的预测结果。

_aggregate_parent_samples方法用于确定如何聚合父样本的预测结果。在这个示例中,我们提供了两种聚合方式:modemeanmode方法返回预测结果中的众数,mean方法返回预测结果的平均值。

在使用示例中,我们创建了一个包含100个样本和10个特征的数据集。然后,我们使用BzmParallelController拟合数据,并使用predict方法进行预测。最后,我们打印出预测结果。

相关内容

热门资讯

AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
AWR报告解读 WORKLOAD REPOSITORY PDB report (PDB snapshots) AW...
AWS管理控制台菜单和权限 要在AWS管理控制台中创建菜单和权限,您可以使用AWS Identity and Access Ma...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
Azure构建流程(Power... 这可能是由于配置错误导致的问题。请检查构建流程任务中的“发布构建制品”步骤,确保正确配置了“Arti...
​ToDesk 远程工具安装及... 目录 前言 ToDesk 优势 ToDesk 下载安装 ToDesk 功能展示 文件传输 设备链接 ...
AWSECS:哪种网络模式具有... 使用AWS ECS中的awsvpc网络模式来获得最佳性能。awsvpc网络模式允许ECS任务直接在V...
群晖外网访问终极解决方法:IP... 写在前面的话 受够了群晖的quickconnet的小水管了,急需一个新的解决方法&#x...
不同的输入格式导致R的diff... 此问题的原因是,对于日期/时间的不同输入格式,difftime函数的输出会有所不同,因为格式不同会影...