主要是我自己刷题的一些记录过程。如果有错可以指出哦,大家一起进步。
转载代码随想录
原文链接:
代码随想录
leetcode链接:47. 全排列 II
给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
示例 1:
输入:nums = [1,1,2]
输出:
[[1,1,2],[1,2,1],[2,1,1]]
示例 2:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
1 <= nums.length <= 8
-10 <= nums[i] <= 10
这道题目和46.全排列的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列。
这里又涉及到去重了。
在40.组合总和II 、90.子集II我们分别详细讲解了组合问题和子集问题如何去重。
那么排列问题其实也是一样的套路。
还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了。
我以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:
图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。
一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果。
在46.全排列中已经详细讲解了排列问题的写法,在40.组合总和II 、90.子集II 中详细讲解了去重的写法,所以这次我就不用回溯三部曲分析了,直接给出代码,如下:
class Solution {
private:vector> result;vector path;void backtracking (vector& nums, vector& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {// used[i - 1] == true,说明同一树枝nums[i - 1]使用过// used[i - 1] == false,说明同一树层nums[i - 1]使用过// 如果同一树层nums[i - 1]使用过则直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}if (used[i] == false) {used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}}
public:vector> permuteUnique(vector& nums) {result.clear();path.clear();sort(nums.begin(), nums.end()); // 排序vector used(nums.size(), false);backtracking(nums, used);return result;}
};
大家发现,去重最为关键的代码为:
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;
}
如果改成 used[i - 1] == true
, 也是正确的!,去重代码如下:
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {continue;
}
这是为什么呢,就是上面我刚说的,如果要对树层中前一位去重,就用used[i - 1] == false
,如果要对树枝前一位去重用used[i - 1] == true
。
对于排列问题,树层上去重和树枝上去重,都是可以的,但是树层上去重效率更高!
这么说是不是有点抽象?
来来来,我就用输入: [1,1,1] 来举一个例子。
树层上去重(used[i - 1] == false),的树形结构如下:
树枝上去重(
used[i - 1] == true
)的树型结构如下:
这道题其实还是用了我们之前讲过的去重思路,但有意思的是,去重的代码中,这么写:
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;
}
和这么写:
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {continue;
}
都是可以的,这也是很多同学做这道题目困惑的地方,知道used[i - 1] == false
也行而used[i - 1] == true
也行,但是就想不明白为啥。
所以我通过举[1,1,1]的例子,把这两个去重的逻辑分别抽象成树形结构,大家可以一目了然:为什么两种写法都可以以及哪一种效率更高!
是不是豁然开朗了!!
class Solution {vector>result;vectorpath;void dfs(vector& nums, vectorused) {if (path.size() == nums.size()) {result.push_back(path);return;}int curDepthDup[25]{0};for (int i = 0; i < nums.size(); ++i) {if (used[i] == true|| curDepthDup[nums[i] + 10] == 1) { //已经被用过了,就不能再用了continue;}curDepthDup[nums[i] + 10] = 1;path.push_back(nums[i]);used[i] = true;dfs(nums, used);used[i] = false;path.pop_back();}return;}public:vector> permuteUnique(vector& nums) {vectorused(nums.size(), false);dfs(nums, used);return result;}
};
上一篇:RHCE学习日记二