正样本图像可能被从 kkk -最近邻中排除,并且随后不被包括在 kkk -相互最近邻中。为了解决这个问题,我们根据以下条件将 R(p,k)\mathcal{R}(p, k)R(p,k) 中每个候选项的 12k\tfrac{1}{2}k21k -相互最近邻增量地添加到更鲁棒的集合 R∗(p,k)\mathcal{R}^*(p, k)R∗(p,k) 中:
Vp=[Vp,g1,Vp,g2,...,Vp,gN]\mathcal{V}_p = [\mathcal{V}_{p, g_1}, \mathcal{V}_{p, g_2}, ..., \mathcal{V}_{p, g_N}]Vp=[Vp,g1,Vp,g2,...,Vp,gN]
Vp,gi={1ifgi∈R∗(p,k)0otherwise.(6)\mathcal{V}_{p, g_i} = \left\{ \begin{array}{ll} 1 & if \ g_i \in \mathcal{R}^*(p, k) \\ 0 & otherwise. \end{array}\right. \ (6)Vp,gi={10if gi∈R∗(p,k)otherwise. (6)
Vp,gi={e−d(p,gi)ifgi∈R∗(p,k)0otherwise.(7)\mathcal{V}_{p, g_i} = \left\{ \begin{array}{ll} e^{-d(p, g_i)} & if \ g_i \in \mathcal{R}^*(p, k) \\ 0 & otherwise. \end{array}\right. \ (7)Vp,gi={e−d(p,gi)0if gi∈R∗(p,k)otherwise. (7)
gig_igi 是图集中的图片, ppp 是查询图像。
∣R∗(p,k)∩R∗(gi,k)∣=∥min(Vp,Vgi)∥1(8)|\mathcal{R}^*(p, k) \cap \mathcal{R}^*(g_i, k)| = \|\min(\mathcal{V}_p, \mathcal{V}_{g_i})\|_1 \ (8)∣R∗(p,k)∩R∗(gi,k)∣=∥min(Vp,Vgi)∥1 (8)
∣R∗(p,k)∪R∗(gi,k)∣=∥max(Vp,Vgi)∥1(9)|\mathcal{R}^*(p, k) \cup \mathcal{R}^*(g_i, k) | = \|\max(\mathcal{V}_p, \mathcal{V}_{g_i})\|_1 \ (9)∣R∗(p,k)∪R∗(gi,k)∣=∥max(Vp,Vgi)∥1 (9)
L1范数是指向量中各个元素绝对值之和
dJ(p,gi)=1−∑j=1Nmin(Vp,gj,Vgi,gj)∑j=1Nmax(Vp,gj,Vgi,gj)(10)d_J(p_, g_i) = 1 - \frac{\sum_{j=1}^N \min(\mathcal{V}_{p, g_j}, \mathcal{V}_{g_i, g_j})}{\sum_{j=1}^N \max(\mathcal{V}_{p, g_j}, \mathcal{V}_{g_i, g_j})} \ (10)dJ(p,gi)=1−∑j=1Nmax(Vp,gj,Vgi,gj)∑j=1Nmin(Vp,gj,Vgi,gj) (10)
如果图像 gjg_jgj 既是 ppp 的 kkk 相互最近邻,又是 gig_igi 的 kkk 相互最近邻,
则 min(Vp,gj,Vgi,gj)=1,max(Vp,gj,Vgi,gj)=1\min(\mathcal{V}_{p, g_j}, \mathcal{V}_{g_i, g_j})=1, \max(\mathcal{V}_{p, g_j}, \mathcal{V}_{g_i, g_j})=1min(Vp,gj,Vgi,gj)=1,max(Vp,gj,Vgi,gj)=1 。