问题描述:如何使用Spark Scala进行字符串匹配的UDF开发?
解决方案:
步骤1:导入Spark SQL和Spark Session包
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.udf
步骤2:创建SparkSession
val spark = SparkSession.builder()
        .appName("String Matching UDF")
        .master("local[*]")
        .getOrCreate()
步骤3:创建DataFrame
val df = spark.createDataFrame(Seq(
 (1, "apple juice"),
 (2, "orange juice"),
 (3, "pineapple juice"),
 (4, "grape juice")
)).toDF("id", "drink_name")
步骤4:定义匹配函数
def matchFunction(drinkName: String): String = {
    if(drinkName.contains("apple")) "is an apple drink"
    else if(drinkName.contains("orange")) "is an orange drink"
    else if(drinkName.contains("pineapple")) "is a pineapple drink"
    else if(drinkName.contains("grape")) "is a grape drink"
    else "is a different drink"
}
步骤5:将匹配函数注册为UDF
val matchUDF = udf(matchFunction _)
步骤6:使用UDF进行DataFrame操作
val resultDF = df.withColumn("match_result", matchUDF($"drink_name"))
resultDF.show(false)
输出结果:
+---+---------------+----------------------+
|id |drink_name     |match_result          |
+---+---------------+----------------------+
|1  |apple juice    |is an apple drink      |
|2  |orange juice   |is an orange drink     |
|3  |pineapple juice|is a pineapple drink   |
|4  |grape juice    |is a grape drink       |
+---+---------------+----------------------+