import sagemaker
sess = sagemaker.Session()
# Specify S3 bucket and prefix
bucket = 'bucket-name'
prefix = 'custom-classes'
# Upload the data to S3
s3_train_data = sess.upload_data(path='train_data.csv', key_prefix=prefix + "/train")
from sagemaker.tensorflow import TensorFlow
# Set up training job configuration
estimator = TensorFlow(entry_point='train.py',
role='SageMakerRole',
train_instance_count=1,
train_instance_type='ml.p2.xlarge',
framework_version='2.4.1',
py_version='py37',
output_path='s3://{}/{}/output'.format(bucket, prefix),
hyperparameters={
'num_classes': 6,
'batch_size': 128,
'epochs': 20
})
# Start the training job
estimator.fit({'train': s3_train_data})
在这个例子中,我们使用 TensorFlow 适配器来定义一个训练作业,并指定新类别的数量。这个代码可以用来训练一个分类模型。
from tensorflow.keras.models import load_model
# Load the trained model
model = load_model('model.h5') # or wherever your model is stored
# Define the new class labels
class_names = ['class1', 'class2', 'class3', 'class4', 'class5', 'class6', 'new_class']
# Predict on some data with the new class
new_data = ... # your new data here
new_predictions = model.predict(new_data)
new_predictions = [class_names[np.argmax(pred)] for pred in new_predictions]
在这个例子中,我们加载训练好的模型,并定义了新类别标签。然后,我们可以使用模型来预测新数据,并将预测值映射到类别标识符。