要停止在关闭Sagemaker时持续使用DataWrangler,应该确保已经合理地终止DataWrangler会话。
以下是如何终止DataWrangler会话的示例代码:
import boto3
sm_session = boto3.Session(region_name='us-west-2')
sm = sm_session.client('sagemaker')
# Replace with your DataWragler Flow Amazon Resource Name (ARN)
flow_arn = "arn:aws:sagemaker:us-west-2:123456789012:data-flow/my-flow"
# Create processing job
processing_job_arn = sm.create_processing_job(
ProcessingInputs=[
{
"InputName": "input_path",
"AppManaged": False,
"S3Input": {
"S3Uri": "s3://path/to/input/data",
"LocalPath": "/opt/ml/processing/input"
}
}
],
ProcessingOutputConfig={
"Outputs": [
{
"OutputName": "output",
"AppManaged": False,
"S3Output": {
"S3Uri": "s3://path/to/output/data",
"LocalPath": "/opt/ml/processing/output",
"S3UploadMode": "EndOfJob"
}
}
]
},
ProcessingJobName="my-processing-job",
ProcessingResources={
"ClusterConfig": {
"InstanceCount": 1,
"InstanceType": "ml.m5.large",
"VolumeSizeInGB": 30
}
},
StoppingCondition={
"MaxRuntimeInSeconds": 300
},
AppSpecification={
"ImageUri": "874736623134.dkr.ecr.us-west-2.amazonaws.com/sagemaker-data-wrangler-container:1.0",
"ContainerEntrypoint": [
"/opt/ml/processing/input/code/data_wrangler_processing.py"
],
"ContainerArguments": [
"--s3_input_path",
"/opt/ml/processing/input",
"--s3_output_path",
"/opt/ml/processing/output",
"--flow_id",
flow_arn.split('/')[-1]
]
},
NetworkConfig={
"EnableNetworkIsolation