AWS SageMaker Neo是一个机器学习模型优化工具,它可以帮助用户在多种设备上运行预训练模型,以提高模型的性能和准确性。相比之下,Native Optimized Runtimes则是基于设备优化的运行时,针对不同的硬件和操作系统进行了优化,以提高模型的性能。
为了获得最佳的运行性能,用户应根据其需求选择适当的工具。下面是一个演示如何使用AWS SageMaker Neo和Native Optimized Runtimes来优化模型的示例:
首先,使用SageMaker Neo将模型编译为设备特定的格式:
import boto3
import sagemaker
sess = sagemaker.Session()
bucket = sess.default_bucket()
prefix = 'sagemaker/neo'
role = sagemaker.get_execution_role()
# create a model object that can be deployed later
model_data = 's3://{}/{}/model.tar.gz'.format(bucket, prefix)
# create a neo compiler object and compile the model for a target device
neo_compiler = sagemaker.neo.compile_model(model_data, target_instance_family='ml_c5', s3_output_path='s3://{}/{}/compiled_model'.format(bucket, prefix))
compiled_model_s3_uri = neo_compiler.compiled_model_s3_uri
然后,使用Native Optimized Runtimes将模型部署到设备上运行:
import awscrt
from awscrt.io import ClientBootstrap
from awscrt.mqtt import Connection, QoS
from awsiot import mqtt_connection_builder
from awsiot.greengrass_discovery import DiscoveryClient, DiscoverResponse
def connect():
bootstrap = ClientBootstrap.builder().build()
client = Connection.new_from_options(
bootstrap=bootstrap,
host_name=endpoint,
port=8883,
client_id="test",
tls_ctx=ssl_context(),
)
print("Connecting to {} with client ID '{}'...".format(endpoint, client