确认您正在使用最新版本的AWS SageMaker Neo,并且已将PyTorch模型转换为ONNX格式。
检查模型是否存在任何导入问题。确保所有导入的库都存在,并且正确安装。
确保您所使用的计算实例具有足够的内存和存储空间,以便成功编译模型。
下面是一个可能解决问题的示范代码:
import torch
import torchvision
import numpy as np
import io, os, shutil
import sagemaker
from sagemaker.pytorch import PyTorch, PyTorchModel
from PIL import Image
# Load the PyTorch model
model_path = "pytorch_model.bin"
model = torch.load(model_path, map_location=torch.device('cpu'))
# Convert the model to ONNX format
input_shape = [1, 3, 224, 224] # Example input shape, modify according to your model
dummy_input = torch.randn(input_shape, requires_grad=True)
torch.onnx.export(model, dummy_input, "model.onnx", verbose=True)
# Initialize the SageMaker session
sagemaker_session = sagemaker.Session()
# Set up the PyTorch estimator
role = "arn:aws:iam::[YOUR ACCOUNT ID]:role/service-role/[YOUR ROLE]"
estimator = PyTorch(entry_point="train.py",
source_dir=os.path.abspath("."),
role=role,
framework_version="1.6.0",
py_version="py3",
train_instance_count=1,
train_instance_type="ml.c4.xlarge")
# Train the PyTorch model and create a PyTorch model artifact
estimator.fit()
model_path = estimator.latest_training_job.outputs["modelArtifacts"]["S3ModelArtifacts"]
pytorch_model = PyTorchModel(model_data=model_path,
role=role,
entry_point="predict.py",
framework_version="1.6.0",
py_version="py3")
# Compile the PyTorch model using SageMaker Neo
compiled_model = pytorch_model.compile(target_instance_family='rasp3b',
input_shape={'input': [1, 3, 224, 224]},
output_path='/home/ec2-user/SageMaker/',
framework='onnx')