出现这个错误是因为num_class参数的值与实际分类数不匹配。num_class是用来指定分类的数量的,因此应该设置为实际的分类数。以下是设置num_class参数的代码示例:
from sagemaker.amazon.amazon_estimator import get_image_uri import sagemaker
bucket_name = 'your-bucket-name' # 应替换成您的S3存储桶名称 training_image = get_image_uri(region_name='us-west-2', repo_name='xgboost', repo_version='latest') s3_input_train = sagemaker.s3_input(s3_data=f's3://{bucket_name}/train/', content_type='csv') num_round = 10 # 迭代次数 num_class = 3 # 分类数 hyperparameters = {'max_depth': 5, 'eta': 0.2, 'gamma': 4, 'min_child_weight': 6, 'subsample': 0.8, 'objective': 'multi:softmax', 'num_class': num_class} # 设置num_class参数 estimator = sagemaker.estimator.Estimator(image_name=training_image, role=sagemaker.get_execution_role(), train_instance_count=1, train_instance_type='ml.m4.xlarge', output_path=f's3://{bucket_name}/output/', sagemaker_session=sagemaker.Session()) estimator.set_hyperparameters(**hyperparameters) estimator.fit({'train': s3_input_train})
上一篇:AWSSageMakerXGBoost多分类算法和num_class超参数错误
下一篇:AWSSagemaker训练数据返回UnexpectedStatusException异常,原因为AlgorithmError:frameworkerror: