在AWS MWAA服务中安装Airflow是相对简单的过程。首先,用户需要在AWS控制台上创建一个MWAA环境。接下来,准备好Airflow的DAG并上传到MWAA环境的S3桶中。然后,通过MWAA环境控制台中的“编辑配置”选项来配置Airflow的相关文件,例如dags_folder和requirements_file。
配置完成后,MWAA服务将自动安装Airflow并将其集成到用户的MWAA环境中。用户只需通过MWAA的界面来管理Airflow和其相关功能即可。
下面是Python代码示例,演示了如何在MWAA服务中安装Airflow和配置相关文件:
import boto3
import json
mwaa = boto3.client('mwaa')
# Create MWAA environment
env_response = mwaa.create_environment(
Name='example-mwaa-environment',
KmsKey='arn:aws:kms:region:account-id:key/key-id',
NetworkConfiguration={
'SubnetIds': ['subnet-id-1', 'subnet-id-2'],
'SecurityGroupIds': ['sg-id-1', 'sg-id-2']
},
WebserverAccessMode='PRIVATE_ONLY',
ExecutorConfiguration={
'NumberOfWorkers': 2,
'ExecutionRoleArn': 'arn:aws:iam::account-id:role/role-name',
'S3Bucket': 'mwaa-bucket-name',
'S3KeyPrefix': 'mwaa/'
}
)
# Upload DAG to S3 bucket
s3 = boto3.client('s3')
s3.upload_file('path/to/example_dag.py', 'mwaa-bucket-name', 'mwaa/dags/example_dag.py')
# Define MWAA environment configuration
mwaa_configuration = {
'airflow_version': '2.1.0',
'dag_folder': 's3://mwaa-bucket-name/mwaa/dags',
'requirements': [
's3://mwaa-bucket-name/mwaa/requirements.txt'
]
}
#
上一篇:AWS时区重定向
下一篇:AWS实时从视频中检测人体