AWS实时ETL管道的最合适的架构可以使用AWS Lambda、Amazon Kinesis Data Streams和Amazon DynamoDB来实现。以下是一个包含代码示例的解决方法:
创建一个Kinesis数据流:
import boto3
kinesis_client = boto3.client('kinesis')
response = kinesis_client.create_stream(
StreamName='my-stream',
ShardCount=1
)
创建一个DynamoDB表用于存储事务数据:
dynamodb_client = boto3.client('dynamodb')
response = dynamodb_client.create_table(
TableName='my-table',
AttributeDefinitions=[
{
'AttributeName': 'transaction_id',
'AttributeType': 'N'
},
],
KeySchema=[
{
'AttributeName': 'transaction_id',
'KeyType': 'HASH'
},
],
ProvisionedThroughput={
'ReadCapacityUnits': 5,
'WriteCapacityUnits': 5
}
)
创建一个Lambda函数用于处理Kinesis数据流并将数据写入DynamoDB表:
import boto3
dynamodb = boto3.resource('dynamodb')
table = dynamodb.Table('my-table')
def lambda_handler(event, context):
for record in event['Records']:
transaction_id = record['Data']
table.put_item(Item={'transaction_id': int(transaction_id)})
创建一个Kinesis数据流消费者Lambda函数来触发实时ETL过程:
import boto3
kinesis_client = boto3.client('kinesis')
lambda_client = boto3.client('lambda')
def lambda_handler(event, context):
response = kinesis_client.describe_stream(
StreamName='my-stream'
)
shard_iterator = kinesis_client.get_shard_iterator(
StreamName='my-stream',
ShardId=response['StreamDescription']['Shards'][0]['ShardId'],
ShardIteratorType='TRIM_HORIZON'
)['ShardIterator']
while True:
response = kinesis_client.get_records(
ShardIterator=shard_iterator,
Limit=100
)
records = response['Records']
if len(records) == 0:
break
payload = {
'Records': records
}
lambda_client.invoke(
FunctionName='my-etl-lambda-function',
InvocationType='Event',
Payload=json.dumps(payload)
)
shard_iterator = response['NextShardIterator']
通过上述架构,数据将从Kinesis数据流传递到Lambda函数中,然后将数据写入DynamoDB表中。您可以根据自己的需求进行必要的修改和调整。
上一篇:AWS实时从视频中检测人体
下一篇:AWS实时监控资源