(4)点云数据处理学习——其它官网例子
创始人
2024-03-02 14:18:41
0

1、主要参考

(1)视频,大佬讲的就是好啊

【Open3D】三维点云python教程_哔哩哔哩_bilibili

(2)官方的github地址

GitHub - isl-org/Open3D: Open3D: A Modern Library for 3D Data Processing

(3)作者

@article{Zhou2018,author    = {Qian-Yi Zhou and Jaesik Park and Vladlen Koltun},title     = {{Open3D}: {A} Modern Library for {3D} Data Processing},journal   = {arXiv:1801.09847},year      = {2018},
}

(4)尤其注意,文档地址

Open3D: A Modern Library for 3D Data Processing — Open3D 0.16.0 documentation

2、相关模块

(1)Open3D-ML,一个机器学习的包

 3、各类官方例子

3.1打开椅子fragment.ply并显示

注意,运行下面程序后会自动下载相应的fragment.ply文件

(1)代码

import open3d as o3d
import numpy as npprint("Load a ply point cloud, print it, and render it")
ply_point_cloud = o3d.data.PLYPointCloud()
pcd = o3d.io.read_point_cloud(ply_point_cloud.path)# 或者你有文件了
# path = "D:/RGBD_CAMERA/python_3d_process/fragment.ply"
# pcd = o3d.io.read_point_cloud(path)  # path为文件路径print(pcd)
print(np.asarray(pcd.points))
o3d.visualization.draw_geometries([pcd],zoom=0.3412,front=[0.4257, -0.2125, -0.8795],lookat=[2.6172, 2.0475, 1.532],up=[-0.0694, -0.9768, 0.2024])

(2)显示结果

注意:按键盘+或者-可以修改点云大小,鼠标可以转动角度

3.2下采样downsampling

3.2.1包围盒下采样

(1)函数,参数应该就包围盒的大小(体素)

voxel_down_sample(voxel_size=0.05)

(2)测试代码

import open3d as o3d
import numpy as np# print("Load a ply point cloud, print it, and render it")
# ply_point_cloud = o3d.data.PLYPointCloud()
# pcd = o3d.io.read_point_cloud(ply_point_cloud.path)# 或者你有文件了
path = "D:/RGBD_CAMERA/python_3d_process/fragment.ply"
pcd = o3d.io.read_point_cloud(path)  # path为文件路径
print(pcd)#--------------------------------------------------------
#(例子一)显示
#---------------------------------------------------------
# print(pcd)
# print(np.asarray(pcd.points))
# o3d.visualization.draw_geometries([pcd],
#                                   zoom=0.3412,
#                                   front=[0.4257, -0.2125, -0.8795],
#                                   lookat=[2.6172, 2.0475, 1.532],
#                                   up=[-0.0694, -0.9768, 0.2024])#--------------------------------------------------------
#(例子二)下采样
#---------------------------------------------------------
downpcd = pcd.voxel_down_sample(voxel_size=0.05)
# downpcd = pcd.voxel_down_sample(voxel_size=0.5)
print(downpcd)
o3d.visualization.draw_geometries([downpcd],zoom=0.3412,front=[0.4257, -0.2125, -0.8795],lookat=[2.6172, 2.0475, 1.532],up=[-0.0694, -0.9768, 0.2024])

(3)测试结果

1)0.05

采样前后的数据

PointCloud with 196133 points.
PointCloud with 4718 points.

 2)0.5

采样前后的数据

PointCloud with 196133 points.
PointCloud with 58 points.

3.3定点法向量估计

(1)测试代码

import open3d as o3d
import numpy as np# print("Load a ply point cloud, print it, and render it")
# ply_point_cloud = o3d.data.PLYPointCloud()
# pcd = o3d.io.read_point_cloud(ply_point_cloud.path)# 或者你有文件了
path = "D:/RGBD_CAMERA/python_3d_process/fragment.ply"
pcd = o3d.io.read_point_cloud(path)  # path为文件路径
print(pcd)#--------------------------------------------------------
#(例子一)显示
#---------------------------------------------------------
# print(pcd)
# print(np.asarray(pcd.points))
# o3d.visualization.draw_geometries([pcd],
#                                   zoom=0.3412,
#                                   front=[0.4257, -0.2125, -0.8795],
#                                   lookat=[2.6172, 2.0475, 1.532],
#                                   up=[-0.0694, -0.9768, 0.2024])#--------------------------------------------------------
#(例子二)下采样
#---------------------------------------------------------
downpcd = pcd.voxel_down_sample(voxel_size=0.05)
# # downpcd = pcd.voxel_down_sample(voxel_size=0.5)
# print(downpcd)
# o3d.visualization.draw_geometries([downpcd],
#                                   zoom=0.3412,
#                                   front=[0.4257, -0.2125, -0.8795],
#                                   lookat=[2.6172, 2.0475, 1.532],
#                                   up=[-0.0694, -0.9768, 0.2024])#--------------------------------------------------------
#(例子三)定点法向量估计
#---------------------------------------------------------
print("Recompute the normal of the downsampled point cloud")
downpcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
o3d.visualization.draw_geometries([downpcd],zoom=0.3412,front=[0.4257, -0.2125, -0.8795],lookat=[2.6172, 2.0475, 1.532],up=[-0.0694, -0.9768, 0.2024],point_show_normal=True)
print("Print a normal vector of the 0th point")
print(downpcd.normals[0])
print("Print the normal vectors of the first 10 points")
print(np.asarray(downpcd.normals)[:10, :])

(2)测试结果

注意:可以通过键盘上的按键N来回切换查看向量

3.4剪切点云数据

(1)两个主要函数

  • read_selection_polygon_volume读取指定多边形选择区域的json文件。
  • vol.crop_point_cloud (pcd)过滤掉点。只剩下椅子了。

(2)使用以下代码后会自动下载并解压2个文件

 (3)测试代码如下

import open3d as o3d
import numpy as np#--------------------------------------------------------
#(例子四)剪切点云
#---------------------------------------------------------
demo_crop_data = o3d.data.DemoCropPointCloud()
pcd = o3d.io.read_point_cloud(demo_crop_data.point_cloud_path)
vol = o3d.visualization.read_selection_polygon_volume(demo_crop_data.cropped_json_path)
chair = vol.crop_point_cloud(pcd)
o3d.visualization.draw_geometries([chair],zoom=0.7,front=[0.5439, -0.2333, -0.8060],lookat=[2.4615, 2.1331, 1.338],up=[-0.1781, -0.9708, 0.1608])

(4)测试结果如图

(5)使用本地文件的方法如下:

import open3d as o3d
import numpy as np#--------------------------------------------------------
#(例子四)剪切点云
#---------------------------------------------------------
# demo_crop_data = o3d.data.DemoCropPointCloud()
# pcd = o3d.io.read_point_cloud(demo_crop_data.point_cloud_path)
# vol = o3d.visualization.read_selection_polygon_volume(demo_crop_data.cropped_json_path)
# chair = vol.crop_point_cloud(pcd)
# o3d.visualization.draw_geometries([chair],
#                                   zoom=0.7,
#                                   front=[0.5439, -0.2333, -0.8060],
#                                   lookat=[2.4615, 2.1331, 1.338],
#                                   up=[-0.1781, -0.9708, 0.1608])#--------------------------------------------------------
#(例子四)剪切点云--使用本地
#---------------------------------------------------------plypath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/fragment.ply"
pcd = o3d.io.read_point_cloud(plypath)  # path为文件路径
jsonpath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/cropped.json"vol = o3d.visualization.read_selection_polygon_volume(jsonpath)
chair = vol.crop_point_cloud(pcd)
o3d.visualization.draw_geometries([chair],zoom=0.7,front=[0.5439, -0.2333, -0.8060],lookat=[2.4615, 2.1331, 1.338],up=[-0.1781, -0.9708, 0.1608])

 (6)其中cropped.json的内容如下:

{"axis_max" : 4.022921085357666,"axis_min" : -0.76341366767883301,"bounding_polygon" : [[ 2.6509309513852526, 0.0, 1.6834473132326844 ],[ 2.5786428246917148, 0.0, 1.6892074266735244 ],[ 2.4625790337552154, 0.0, 1.6665777078297999 ],[ 2.2228544982251655, 0.0, 1.6168160446813649 ],[ 2.166993206001413, 0.0, 1.6115495157201662 ],[ 2.1167895865303286, 0.0, 1.6257706054969348 ],[ 2.0634657721747383, 0.0, 1.623021658624539 ],[ 2.0568612343437236, 0.0, 1.5853892911207643 ],[ 2.1605399001237027, 0.0, 0.96228993255083017 ],[ 2.1956669387205228, 0.0, 0.95572746049785073 ],[ 2.2191318790575583, 0.0, 0.88734449982108754 ],[ 2.2484881847925919, 0.0, 0.87042807267013633 ],[ 2.6891234157295827, 0.0, 0.94140677988967603 ],[ 2.7328692490470647, 0.0, 0.98775740674840251 ],[ 2.7129337547575547, 0.0, 1.0398850034649203 ],[ 2.7592174072415405, 0.0, 1.0692940558509485 ],[ 2.7689216419453428, 0.0, 1.0953914441371593 ],[ 2.6851455625455669, 0.0, 1.6307334122162018 ],[ 2.6714776099981239, 0.0, 1.675524657088997 ],[ 2.6579576128816544, 0.0, 1.6819127849749496 ]],"class_name" : "SelectionPolygonVolume","orthogonal_axis" : "Y","version_major" : 1,"version_minor" : 0
}

3.5 给点云上颜色

(1)参数,后面三个是RGB的颜色,取值都是0--1

paint_uniform_color([1, 0.706, 0])

(2)代码

import open3d as o3d
import numpy as np#--------------------------------------------------------
#(例子四)剪切点云--使用本地
#---------------------------------------------------------plypath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/fragment.ply"
pcd = o3d.io.read_point_cloud(plypath)  # path为文件路径
jsonpath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/cropped.json"vol = o3d.visualization.read_selection_polygon_volume(jsonpath)
chair = vol.crop_point_cloud(pcd)
# o3d.visualization.draw_geometries([chair],
#                                   zoom=0.7,
#                                   front=[0.5439, -0.2333, -0.8060],
#                                   lookat=[2.4615, 2.1331, 1.338],
#                                   up=[-0.1781, -0.9708, 0.1608])print("Paint chair")
chair.paint_uniform_color([1, 0.706, 0])
o3d.visualization.draw_geometries([chair],zoom=0.7,front=[0.5439, -0.2333, -0.8060],lookat=[2.4615, 2.1331, 1.338],up=[-0.1781, -0.9708, 0.1608])

(3)测试结果

相关内容

热门资讯

【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
AsusVivobook无法开... 首先,我们可以尝试重置BIOS(Basic Input/Output System)来解决这个问题。...
ASM贪吃蛇游戏-解决错误的问... 要解决ASM贪吃蛇游戏中的错误问题,你可以按照以下步骤进行:首先,确定错误的具体表现和问题所在。在贪...
月入8000+的steam搬砖... 大家好,我是阿阳 今天要给大家介绍的是 steam 游戏搬砖项目,目前...