(4)点云数据处理学习——其它官网例子
创始人
2024-03-02 14:18:41
0

1、主要参考

(1)视频,大佬讲的就是好啊

【Open3D】三维点云python教程_哔哩哔哩_bilibili

(2)官方的github地址

GitHub - isl-org/Open3D: Open3D: A Modern Library for 3D Data Processing

(3)作者

@article{Zhou2018,author    = {Qian-Yi Zhou and Jaesik Park and Vladlen Koltun},title     = {{Open3D}: {A} Modern Library for {3D} Data Processing},journal   = {arXiv:1801.09847},year      = {2018},
}

(4)尤其注意,文档地址

Open3D: A Modern Library for 3D Data Processing — Open3D 0.16.0 documentation

2、相关模块

(1)Open3D-ML,一个机器学习的包

 3、各类官方例子

3.1打开椅子fragment.ply并显示

注意,运行下面程序后会自动下载相应的fragment.ply文件

(1)代码

import open3d as o3d
import numpy as npprint("Load a ply point cloud, print it, and render it")
ply_point_cloud = o3d.data.PLYPointCloud()
pcd = o3d.io.read_point_cloud(ply_point_cloud.path)# 或者你有文件了
# path = "D:/RGBD_CAMERA/python_3d_process/fragment.ply"
# pcd = o3d.io.read_point_cloud(path)  # path为文件路径print(pcd)
print(np.asarray(pcd.points))
o3d.visualization.draw_geometries([pcd],zoom=0.3412,front=[0.4257, -0.2125, -0.8795],lookat=[2.6172, 2.0475, 1.532],up=[-0.0694, -0.9768, 0.2024])

(2)显示结果

注意:按键盘+或者-可以修改点云大小,鼠标可以转动角度

3.2下采样downsampling

3.2.1包围盒下采样

(1)函数,参数应该就包围盒的大小(体素)

voxel_down_sample(voxel_size=0.05)

(2)测试代码

import open3d as o3d
import numpy as np# print("Load a ply point cloud, print it, and render it")
# ply_point_cloud = o3d.data.PLYPointCloud()
# pcd = o3d.io.read_point_cloud(ply_point_cloud.path)# 或者你有文件了
path = "D:/RGBD_CAMERA/python_3d_process/fragment.ply"
pcd = o3d.io.read_point_cloud(path)  # path为文件路径
print(pcd)#--------------------------------------------------------
#(例子一)显示
#---------------------------------------------------------
# print(pcd)
# print(np.asarray(pcd.points))
# o3d.visualization.draw_geometries([pcd],
#                                   zoom=0.3412,
#                                   front=[0.4257, -0.2125, -0.8795],
#                                   lookat=[2.6172, 2.0475, 1.532],
#                                   up=[-0.0694, -0.9768, 0.2024])#--------------------------------------------------------
#(例子二)下采样
#---------------------------------------------------------
downpcd = pcd.voxel_down_sample(voxel_size=0.05)
# downpcd = pcd.voxel_down_sample(voxel_size=0.5)
print(downpcd)
o3d.visualization.draw_geometries([downpcd],zoom=0.3412,front=[0.4257, -0.2125, -0.8795],lookat=[2.6172, 2.0475, 1.532],up=[-0.0694, -0.9768, 0.2024])

(3)测试结果

1)0.05

采样前后的数据

PointCloud with 196133 points.
PointCloud with 4718 points.

 2)0.5

采样前后的数据

PointCloud with 196133 points.
PointCloud with 58 points.

3.3定点法向量估计

(1)测试代码

import open3d as o3d
import numpy as np# print("Load a ply point cloud, print it, and render it")
# ply_point_cloud = o3d.data.PLYPointCloud()
# pcd = o3d.io.read_point_cloud(ply_point_cloud.path)# 或者你有文件了
path = "D:/RGBD_CAMERA/python_3d_process/fragment.ply"
pcd = o3d.io.read_point_cloud(path)  # path为文件路径
print(pcd)#--------------------------------------------------------
#(例子一)显示
#---------------------------------------------------------
# print(pcd)
# print(np.asarray(pcd.points))
# o3d.visualization.draw_geometries([pcd],
#                                   zoom=0.3412,
#                                   front=[0.4257, -0.2125, -0.8795],
#                                   lookat=[2.6172, 2.0475, 1.532],
#                                   up=[-0.0694, -0.9768, 0.2024])#--------------------------------------------------------
#(例子二)下采样
#---------------------------------------------------------
downpcd = pcd.voxel_down_sample(voxel_size=0.05)
# # downpcd = pcd.voxel_down_sample(voxel_size=0.5)
# print(downpcd)
# o3d.visualization.draw_geometries([downpcd],
#                                   zoom=0.3412,
#                                   front=[0.4257, -0.2125, -0.8795],
#                                   lookat=[2.6172, 2.0475, 1.532],
#                                   up=[-0.0694, -0.9768, 0.2024])#--------------------------------------------------------
#(例子三)定点法向量估计
#---------------------------------------------------------
print("Recompute the normal of the downsampled point cloud")
downpcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
o3d.visualization.draw_geometries([downpcd],zoom=0.3412,front=[0.4257, -0.2125, -0.8795],lookat=[2.6172, 2.0475, 1.532],up=[-0.0694, -0.9768, 0.2024],point_show_normal=True)
print("Print a normal vector of the 0th point")
print(downpcd.normals[0])
print("Print the normal vectors of the first 10 points")
print(np.asarray(downpcd.normals)[:10, :])

(2)测试结果

注意:可以通过键盘上的按键N来回切换查看向量

3.4剪切点云数据

(1)两个主要函数

  • read_selection_polygon_volume读取指定多边形选择区域的json文件。
  • vol.crop_point_cloud (pcd)过滤掉点。只剩下椅子了。

(2)使用以下代码后会自动下载并解压2个文件

 (3)测试代码如下

import open3d as o3d
import numpy as np#--------------------------------------------------------
#(例子四)剪切点云
#---------------------------------------------------------
demo_crop_data = o3d.data.DemoCropPointCloud()
pcd = o3d.io.read_point_cloud(demo_crop_data.point_cloud_path)
vol = o3d.visualization.read_selection_polygon_volume(demo_crop_data.cropped_json_path)
chair = vol.crop_point_cloud(pcd)
o3d.visualization.draw_geometries([chair],zoom=0.7,front=[0.5439, -0.2333, -0.8060],lookat=[2.4615, 2.1331, 1.338],up=[-0.1781, -0.9708, 0.1608])

(4)测试结果如图

(5)使用本地文件的方法如下:

import open3d as o3d
import numpy as np#--------------------------------------------------------
#(例子四)剪切点云
#---------------------------------------------------------
# demo_crop_data = o3d.data.DemoCropPointCloud()
# pcd = o3d.io.read_point_cloud(demo_crop_data.point_cloud_path)
# vol = o3d.visualization.read_selection_polygon_volume(demo_crop_data.cropped_json_path)
# chair = vol.crop_point_cloud(pcd)
# o3d.visualization.draw_geometries([chair],
#                                   zoom=0.7,
#                                   front=[0.5439, -0.2333, -0.8060],
#                                   lookat=[2.4615, 2.1331, 1.338],
#                                   up=[-0.1781, -0.9708, 0.1608])#--------------------------------------------------------
#(例子四)剪切点云--使用本地
#---------------------------------------------------------plypath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/fragment.ply"
pcd = o3d.io.read_point_cloud(plypath)  # path为文件路径
jsonpath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/cropped.json"vol = o3d.visualization.read_selection_polygon_volume(jsonpath)
chair = vol.crop_point_cloud(pcd)
o3d.visualization.draw_geometries([chair],zoom=0.7,front=[0.5439, -0.2333, -0.8060],lookat=[2.4615, 2.1331, 1.338],up=[-0.1781, -0.9708, 0.1608])

 (6)其中cropped.json的内容如下:

{"axis_max" : 4.022921085357666,"axis_min" : -0.76341366767883301,"bounding_polygon" : [[ 2.6509309513852526, 0.0, 1.6834473132326844 ],[ 2.5786428246917148, 0.0, 1.6892074266735244 ],[ 2.4625790337552154, 0.0, 1.6665777078297999 ],[ 2.2228544982251655, 0.0, 1.6168160446813649 ],[ 2.166993206001413, 0.0, 1.6115495157201662 ],[ 2.1167895865303286, 0.0, 1.6257706054969348 ],[ 2.0634657721747383, 0.0, 1.623021658624539 ],[ 2.0568612343437236, 0.0, 1.5853892911207643 ],[ 2.1605399001237027, 0.0, 0.96228993255083017 ],[ 2.1956669387205228, 0.0, 0.95572746049785073 ],[ 2.2191318790575583, 0.0, 0.88734449982108754 ],[ 2.2484881847925919, 0.0, 0.87042807267013633 ],[ 2.6891234157295827, 0.0, 0.94140677988967603 ],[ 2.7328692490470647, 0.0, 0.98775740674840251 ],[ 2.7129337547575547, 0.0, 1.0398850034649203 ],[ 2.7592174072415405, 0.0, 1.0692940558509485 ],[ 2.7689216419453428, 0.0, 1.0953914441371593 ],[ 2.6851455625455669, 0.0, 1.6307334122162018 ],[ 2.6714776099981239, 0.0, 1.675524657088997 ],[ 2.6579576128816544, 0.0, 1.6819127849749496 ]],"class_name" : "SelectionPolygonVolume","orthogonal_axis" : "Y","version_major" : 1,"version_minor" : 0
}

3.5 给点云上颜色

(1)参数,后面三个是RGB的颜色,取值都是0--1

paint_uniform_color([1, 0.706, 0])

(2)代码

import open3d as o3d
import numpy as np#--------------------------------------------------------
#(例子四)剪切点云--使用本地
#---------------------------------------------------------plypath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/fragment.ply"
pcd = o3d.io.read_point_cloud(plypath)  # path为文件路径
jsonpath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/cropped.json"vol = o3d.visualization.read_selection_polygon_volume(jsonpath)
chair = vol.crop_point_cloud(pcd)
# o3d.visualization.draw_geometries([chair],
#                                   zoom=0.7,
#                                   front=[0.5439, -0.2333, -0.8060],
#                                   lookat=[2.4615, 2.1331, 1.338],
#                                   up=[-0.1781, -0.9708, 0.1608])print("Paint chair")
chair.paint_uniform_color([1, 0.706, 0])
o3d.visualization.draw_geometries([chair],zoom=0.7,front=[0.5439, -0.2333, -0.8060],lookat=[2.4615, 2.1331, 1.338],up=[-0.1781, -0.9708, 0.1608])

(3)测试结果

相关内容

热门资讯

保存时出现了1个错误,导致这篇... 当保存文章时出现错误时,可以通过以下步骤解决问题:查看错误信息:查看错误提示信息可以帮助我们了解具体...
汇川伺服电机位置控制模式参数配... 1. 基本控制参数设置 1)设置位置控制模式   2)绝对值位置线性模...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
表格中数据未显示 当表格中的数据未显示时,可能是由于以下几个原因导致的:HTML代码问题:检查表格的HTML代码是否正...
本地主机上的图像未显示 问题描述:在本地主机上显示图像时,图像未能正常显示。解决方法:以下是一些可能的解决方法,具体取决于问...
表格列调整大小出现问题 问题描述:表格列调整大小出现问题,无法正常调整列宽。解决方法:检查表格的布局方式是否正确。确保表格使...
不一致的条件格式 要解决不一致的条件格式问题,可以按照以下步骤进行:确定条件格式的规则:首先,需要明确条件格式的规则是...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...