R 语言 stats 包中的函数
创始人
2024-03-02 16:06:16
0

我们已经学习了 R 语言的基础知识,包括其语法以及语法所对应的语义,现在准备使用 R 向统计学领域进发。本文是 R 系列的第十一篇文章,我们将学习如何使用 R 语言 stats 包中提供的统计函数。

与此系列之前的文章一样,我们将使用安装在 Parabola GNU/Linux-libre(x86-64)上的 R 4.1.2 版本来运行文中的代码。

$ R --version
R version 4.1.2 (2021-11-01) -- "Bird Hippie"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under the terms of the
GNU General Public License versions 2 or 3.
For more information about these matters see https://www.gnu.org/licenses/

mean 函数

在 R 中 mean 函数用来计算算术平均值。该函数接受一个 R 对象 x 作为参数,以及一个 trim 选项来在计算均值之前剔除任意比例的数据(LCTT 译注:比如对于一个含有 7 个元素的向量 x,设置 trim 为 0.2 表示分别去掉 x 中最大和最小的前 20% —— 即 1.4 个 —— 的元素,所去掉的元素的个数会向下取整,所以最终会去掉 1 个最大值和 1 个最小值;trim 取值范围为 [0, 0.5],默认为 0)。 逻辑参数 logical argument (TRUEFALSEna.rm 可以设置是否忽略空值(NA)。该函数的语法如下:

mean(x, trim = 0, na.rm = FALSE, ...)

该函数支持数值、逻辑值、日期和 时间区间 time intervals 。下面是使用 mean 函数的一些例子:

> mean(c(1, 2, 3))
2

> mean(c(1:5, 10, 20))
6.428571

> mean(c(FALSE, TRUE, FALSE))
0.3333333

> mean(c(TRUE, TRUE, TRUE))
1

我们使用 UCI 机器学习库提供的一个采集自葡萄牙银行机构的“银行营销数据集”作为样本数据。该数据可用于公共研究,包含 4 个 csv 文件,我们使用 read.csv() 函数导入其中的 bank.csv 文件。

> bank <- read.csv(file="bank.csv", sep=";")

> bank[1:3,]
  age        job marital education default balance housing loan  contact day
1  30 unemployed married   primary      no    1787      no   no cellular  19
2  33   services married secondary      no    4789     yes  yes cellular  11
3  35 management  single  tertiary      no    1350     yes   no cellular  16
  month duration campaign pdays previous poutcome  y
1   oct       79        1    -1        0  unknown no
2   may      220        1   339        4  failure no
3   apr      185        1   330        1  failure no

下面是计算 age 列均值的示例:

> mean(bank$age)
41.1701

median 函数

R 语言 stats 包中的 median 函数用来计算样本的中位数。该函数接受一个数值向量 x,以及一个逻辑值 na.rm 用来设置在计算中位数之前是否去除 NA 值。该函数的语法如下:

median(x, na.rm = FALSE, ...)

下面是使用该函数的两个例子:

> median(3:5)
4
> median(c(3:5, 50, 150))
[1] 5

现在我们可以计算银行数据中 age 列的中位数:

> median(bank$age)
39

pair 函数

pair 函数用来合并两个向量,接受向量 x 和向量 y 两个参数。xy 的长度必须相等。

Pair(x, y)

该函数返回一个 Pair 类的列数为 2 的矩阵,示例如下:

> Pair(c(1,2,3), c(4,5,6))
     x y
[1,] 1 4
[2,] 2 5
[3,] 3 6
attr(,"class")
[1] "Pair"

该函数常用于像 T 检验和 Wilcox 检验等的 配对检验 paired test 。

dist 函数

dist 函数用来计算数据矩阵中各行之间的距离矩阵,接受以下参数:

参数描述
x数值矩阵
method距离测量方法
diag若为 TRUE,则打印距离矩阵的对角线
upper若为 TRUE,则打印距离矩阵的上三角
p闵可夫斯基距离的幂次(见下文 LCTT 译注)

该函数提供的距离测量方法包括: 欧式距离 euclidean 、 最大距离 maximum 、 曼哈顿距离 manhattan 、 堪培拉距离 canberra 、 二进制距离 binary 和 闵可夫斯基距离 minkowski ,默认为欧式距离。

LCTT 译注:

  • 欧式距离指两点之间线段的长度,比如二维空间中 A 点 和 B 点 的欧式距离是
  • 最大距离指 n 维向量空间中两点在各维度上的距离的最大值,比如 A 点 (3,6,8,9) 和 B 点 (1,8,9,10) 之间的最大距离是 ,等于 2;
  • 曼哈顿距离指 n 维向量空间中两点在各维度上的距离之和,比如二维空间中 A 点 和 B 点 之间的曼哈顿距离是
  • 堪培拉距离的公式是
  • 二进制距离首先将两个向量中的各元素看作其二进制形式,然后剔除在两个向量中对应值均为 0 的维度,最后计算在剩下的维度上两个向量间的对应值不相同的比例,比如 V1=(1,3,0,5,0) 和 V2=(11,13,0,15,10) 的二进制形式分别是 (1,1,0,1,0) 和 (1,1,0,1,1),其中第 3 个维度的对应值均为 0,剔除该维度之后为 (1,1,1,0) 和 (1,1,1,1),在剩余的 4 个维度中只有最后一个维度在两个向量之间的值不同,最终结果为 0.25;
  • 闵可夫斯基距离是欧式距离和曼哈顿距离的推广,公式是 ,当 p = 1 时相当于曼哈顿距离,当 p = 2 时相当于欧式距离。

下面是使用欧式距离计算 age 列距离矩阵的示例:

> dist(bank$age, method="euclidean", diag=FALSE, upper=FALSE, p=2)
      1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2     3
3     5  2
4     0  3  5
5    29 26 24 29
6     5  2  0  5 24
7     6  3  1  6 23  1
8     9  6  4  9 20  4  3
9    11  8  6 11 18  6  5  2
10   13 10  8 13 16  8  7  4  2
11    9  6  4  9 20  4  3  0  2  4
12   13 10  8 13 16  8  7  4  2  0  4
13    6  3  1  6 23  1  0  3  5  7  3  7
14   10 13 15 10 39 15 16 19 21 23 19 23 16
15    1  2  4  1 28  4  5  8 10 12  8 12  5 11
16   10  7  5 10 19  5  4  1  1  3  1  3  4 20  9
17   26 23 21 26  3 21 20 17 15 13 17 13 20 36 25 16
18    7  4  2  7 22  2  1  2  4  6  2  6  1 17  6  3 19
19    5  8 10  5 34 10 11 14 16 18 14 18 11  5  6 15 31 12
20    1  2  4  1 28  4  5  8 10 12  8 12  5 11  0  9 25  6  6
21    8  5  3  8 21  3  2  1  3  5  1  5  2 18  7  2 18  1 13  7
22   12  9  7 12 17  7  6  3  1  1  3  1  6 22 11  2 14  5 17 11  4
23   14 11  9 14 15  9  8  5  3  1  5  1  8 24 13  4 12  7 19 13  6  2
     26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
...

改用二进制距离的计算结果如下:

> dist(bank$age, method="binary", diag=FALSE, upper=FALSE, p=2)
     1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
2    0
3    0 0
4    0 0 0
5    0 0 0 0
6    0 0 0 0 0
7    0 0 0 0 0 0
8    0 0 0 0 0 0 0
9    0 0 0 0 0 0 0 0
10   0 0 0 0 0 0 0 0 0
11   0 0 0 0 0 0 0 0 0  0
12   0 0 0 0 0 0 0 0 0  0  0
13   0 0 0 0 0 0 0 0 0  0  0  0
14   0 0 0 0 0 0 0 0 0  0  0  0  0
15   0 0 0 0 0 0 0 0 0  0  0  0  0  0
16   0 0 0 0 0 0 0 0 0  0  0  0  0  0  0
17   0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0
18   0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0
19   0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0
20   0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0
21   0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0
22   0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0
23   0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0
     29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

quantile 函数

quantile 函数用于计算数值向量 x 的分位数及其对应的概率。当设置 na.rmTRUE 时,该函数将忽略向量中的 NANaN 值。概率 0 对应最小观测值,概率 1 对应最大观测值。该函数的语法如下:

quantile(x, ...)

quantile 函数接受以下参数:

参数描述
x数值向量
probs概率向量,取值为 [0, 1](LCTT 译注:默认为 (0, 0.25, 0.5, 0.75, 1)
na.rm若为 TRUE,忽略向量中的 NANaN
names若为 TRUE,在结果中包含命名属性
type整数类型,用于选择任意一个九种分位数算法(LCTT 译注:默认为 7)
digits小数精度
传递给其他方法的额外参数

rnorm 函数可用于生成正态分布的随机数。它可以接受要生成的观测值的数量 n,一个均值向量以及一个标准差向量。下面是一个计算 rnorm 函数生成的随机数的四分位数的示例:

> quantile(x <- rnorm(100))
    0%          25%          50%          75%         100%
-1.978171612 -0.746829079 -0.009440368  0.698271134  1.897942805

下面是生成银行年龄数据对应概率下的分位数的示例:

> quantile(bank$age, probs = c(0.1, 0.5, 1, 2, 5, 10, 50)/100)
0.1% 0.5%   1%   2%   5%  10%  50%
20.0 22.6 24.0 25.0 27.0 29.0 39.0

IQR 函数

IQR 函数用于计算向量中数值的 四分位距 interquartile range 。其语法如下:

IQR(x, na.rm = FALSE, type = 7)

参数 type 指定了一个整数以选择分位数算法,该算法在 Hyndman and Fan (1996) 中进行了讨论。下面是计算银行年龄四分位距的示例:

> IQR(bank$age, na.rm = FALSE, type=7)
16

sd 函数

sd 函数用来计算一组数值中的标准差。该函数接受一个 数值向量 numeric vector x 和一个逻辑值 na.rmna.rm 用来设置在计算时是否忽略缺失值。该函数的语法如下:

sd(x, na.rm = FALSE)

对于长度为 0 或 1 的向量,该函数返回 NA。下面是两个例子:

> sd(1:10)
3.02765

> sd(1)
NA

下面是计算 age 列标准差的示例:

> sd(bank$age)
10.57621

R 语言 stats 包中还有很多其他函数,鼓励你自行探索。

(题图:MJ/ee6b533d-69fc-4baa-a985-cc4e499b5029)


via: https://www.opensourceforu.com/2022/08/the-functions-in-the-r-stats-package/

作者:Shakthi Kannan 选题:lkxed 译者:tanloong 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

相关内容

荣耀发布年度最强AI旗舰全...
2025年7月2日,全球领先的AI终端生态公司荣耀(HONOR)在...
2025-07-03 12:42:33
华为盘古大模型首次开源!昇...
克雷西 发自 凹非寺 量子位 | 公众号 QbitAI 华为盘古大...
2025-07-02 21:12:24
原创 ...
多模态大模型正在从“看得见”走向“看得懂、想得通”。 智谱正式发布...
2025-07-02 15:40:54
AI眼镜的薛定谔“出圈”
来源 | 伯虎财经(bohuFN) 作者 | 楷楷 AI眼镜,...
2025-07-02 15:13:40
AI视频时代,谁在闻风而动
当内容产业开始进入AI模型化阶段,大家拼的不仅是流量,也是数据、算...
2025-07-02 14:12:28
不去北上广 县城医院同样可...
IT时报记者 贾天荣 在癌症诊疗中,早发现、早诊断、早治疗至关重要...
2025-07-02 10:12:00

热门资讯

Helix:高级 Linux ... 说到 基于终端的文本编辑器,通常 Vim、Emacs 和 Nano 受到了关注。这并不意味着没有其他...
使用 KRAWL 扫描 Kub... 用 KRAWL 脚本来识别 Kubernetes Pod 和容器中的错误。当你使用 Kubernet...
JStock:Linux 上不... 如果你在股票市场做投资,那么你可能非常清楚投资组合管理计划有多重要。管理投资组合的目标是依据你能承受...
通过 SaltStack 管理... 我在搜索Puppet的替代品时,偶然间碰到了Salt。我喜欢puppet,但是我又爱上Salt了:)...
Epic 游戏商店现在可在 S... 现在可以在 Steam Deck 上运行 Epic 游戏商店了,几乎无懈可击! 但是,它是非官方的。...
《Apex 英雄》正式可在 S... 《Apex 英雄》现已通过 Steam Deck 验证,这使其成为支持 Linux 的顶级多人游戏之...
如何在 Github 上创建一... 学习如何复刻一个仓库,进行更改,并要求维护人员审查并合并它。你知道如何使用 git 了,你有一个 G...
2024 开年,LLUG 和你... Hi,Linuxer,2024 新年伊始,不知道你是否已经准备好迎接新的一年~ 2024 年,Lin...
什么是 KDE Connect... 什么是 KDE Connect?它的主要特性是什么?它应该如何安装?本文提供了基本的使用指南。科技日...
Opera 浏览器内置的 VP... 昨天我们报道过 Opera 浏览器内置了 VPN 服务,用户打开它可以防止他们的在线活动被窥视。不过...