AWS Glue提供了一种名为动态帧(DynamicFrame)的数据结构,它可以轻松地处理具有不同结构的记录。下面是使用AWS Glue进行动态记录匹配的解决方案示例代码:
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.transforms import ResolveChoice, DropNullFields, SelectFields
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
glueContext = GlueContext(spark.sparkContext)
source_connection_options = {
"paths": ["s3://your-source-data-path"]
}
target_connection_options = {
"path": "s3://your-target-data-path",
"partitionKeys": ["your-partition-key"]
}
source_dynamic_frame = glueContext.create_dynamic_frame.from_options(
connection_type="s3",
connection_options=source_connection_options,
format="json"
)
target_schema = glueContext.create_dynamic_frame.from_catalog(
database="your-database-name",
table_name="your-table-name"
).schema()
resolved_dynamic_frame = ResolveChoice.apply(
frame=source_dynamic_frame,
choice="make_struct"
)
dropped_null_fields_dynamic_frame = DropNullFields.apply(
frame=resolved_dynamic_frame
)
selected_fields_dynamic_frame = SelectFields.apply(
frame=dropped_null_fields_dynamic_frame,
paths=["field1", "field2", "field3"]
)
target_dynamic_frame = glueContext.write_dynamic_frame.from_options(
frame=selected_fields_dynamic_frame,
connection_type="s3",
connection_options=target_connection_options,
format="parquet",
transformation_ctx="target_dynamic_frame"
)
glueContext.write_dynamic_frame.from_catalog(
frame=target_dynamic_frame,
database="your-database-name",
table_name="your-table-name",
transformation_ctx="target_dynamic_frame"
)
请根据实际情况调整上述代码示例中的参数和连接信息。这是一个基本的示例,您可以根据自己的需求进行修改和扩展。