要解决“巴赫达纽斯在带有注意力机制的神经机器翻译中的关注”问题并包含代码示例,您可以按照以下步骤进行:
确定机器翻译任务的输入和输出数据集。例如,您可以使用一个包含源语言句子和目标语言句子的平行语料库。
导入所需的Python库。在这个例子中,我们将使用tensorflow
和keras
来实现神经机器翻译模型。
import tensorflow as tf
from tensorflow import keras
keras
的Tokenizer
类来实现这一点。def prepare_data(input_text, output_text):
input_tokenizer = keras.preprocessing.text.Tokenizer()
input_tokenizer.fit_on_texts(input_text)
input_data = input_tokenizer.texts_to_sequences(input_text)
output_tokenizer = keras.preprocessing.text.Tokenizer()
output_tokenizer.fit_on_texts(output_text)
output_data = output_tokenizer.texts_to_sequences(output_text)
return input_data, output_data, input_tokenizer, output_tokenizer
def build_model(input_vocab_size, output_vocab_size, input_length, output_length, hidden_units):
# Encoder
encoder_inputs = keras.layers.Input(shape=(input_length,))
encoder_embedded = keras.layers.Embedding(input_vocab_size, hidden_units, mask_zero=True)(encoder_inputs)
encoder_outputs, state_h, state_c = keras.layers.LSTM(hidden_units, return_state=True)(encoder_embedded)
encoder_states = [state_h, state_c]
# Decoder
decoder_inputs = keras.layers.Input(shape=(output_length,))
decoder_embedded = keras.layers.Embedding(output_vocab_size, hidden_units, mask_zero=True)(decoder_inputs)
decoder_lstm = keras.layers.LSTM(hidden_units, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_embedded, initial_state=encoder_states)
# Attention
attention = keras.layers.Attention()([decoder_outputs, encoder_outputs])
attention_outputs = keras.layers.Concatenate()([decoder_outputs, attention])
decoder_dense = keras.layers.Dense(output_vocab_size, activation='softmax')
decoder_outputs = decoder_dense(attention_outputs)
model = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)
return model
def train_model(model, input_data, output_data, batch_size, epochs):
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
model.fit([input_data, output_data[:, :-1]], output_data[:, 1:], batch_size=batch_size, epochs=epochs)
def translate(model, input_sentence, input_tokenizer, output_tokenizer, max_length):
input_sequence = input_tokenizer.texts_to_sequences([input_sentence])
input_sequence = keras.preprocessing.sequence.pad_sequences(input_sequence, maxlen=max_length, padding='post')
output_sequence = [output_tokenizer.word_index['']]
for _ in range(max_length):
output = model.predict([input_sequence, output_sequence])
predicted_id = tf.argmax(output, axis=-1)[:, -1].numpy()[0]
if predicted_id == output_tokenizer.word_index['']:
break
output_sequence.append(predicted_id)
output_text = output_tokenizer.sequences_to_texts([output_sequence])[0]
return output_text
input_text = ['I am a student', 'He is a teacher', 'She likes to read']
output_text = ['Je suis étudiant', 'Il est enseignant', 'Elle aime lire']
input_data, output_data, input_tokenizer, output_tokenizer = prepare_data(input_text
下一篇:巴赫:回声和换行