解决不平衡数据集的多标签分类问题可以通过以下步骤进行:
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
# 加载数据集
data = pd.read_csv('data.csv')
# 分割特征和标签
X = data.drop('labels', axis=1)
y = data['labels']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
# 过采样
over_sampler = RandomOverSampler(random_state=42)
X_train_over, y_train_over = over_sampler.fit_resample(X_train, y_train)
# 欠采样
under_sampler = RandomUnderSampler(random_state=42)
X_train_under, y_train_under = under_sampler.fit_resample(X_train, y_train)
from sklearn.multioutput import MultiOutputClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# 训练模型
model = MultiOutputClassifier(RandomForestClassifier(random_state=42))
model.fit(X_train_over, y_train_over)
# 预测标签
y_pred = model.predict(X_test)
# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
通过以上步骤,可以解决不平衡数据集的多标签分类问题。需要注意的是,在进行采样时需要根据具体情况选择合适的采样方法,并在模型训练和评估过程中使用适当的指标来评估模型性能。
上一篇:不平衡数据和交叉验证
下一篇:不平衡数据集的分类