不平衡数据集的分类问题可以通过以下几种方法来解决:
from imblearn.over_sampling import RandomOverSampler, SMOTE
# 随机过采样
ros = RandomOverSampler()
X_ros, y_ros = ros.fit_resample(X, y)
# SMOTE过采样
smote = SMOTE()
X_smote, y_smote = smote.fit_resample(X, y)
from imblearn.under_sampling import RandomUnderSampler, TomekLinks
# 随机欠采样
rus = RandomUnderSampler()
X_rus, y_rus = rus.fit_resample(X, y)
# Tomek links欠采样
tl = TomekLinks()
X_tl, y_tl = tl.fit_resample(X, y)
from imblearn.combine import SMOTEENN, SMOTETomek
# SMOTEENN组合采样
sme = SMOTEENN()
X_sme, y_sme = sme.fit_resample(X, y)
# SMOTETomek组合采样
smt = SMOTETomek()
X_smt, y_smt = smt.fit_resample(X, y)
from sklearn.metrics import roc_auc_score
# 训练分类器
clf.fit(X_train, y_train)
# 预测概率
y_pred_prob = clf.predict_proba(X_test)[:, 1]
# 根据AUC值选择最佳阈值
best_threshold = None
best_auc = 0.0
for threshold in np.arange(0.1, 1.0, 0.1):
y_pred = (y_pred_prob >= threshold).astype(int)
auc = roc_auc_score(y_test, y_pred)
if auc > best_auc:
best_auc = auc
best_threshold = threshold
# 根据最佳阈值重新分类
y_pred = (y_pred_prob >= best_threshold).astype(int)
需要注意的是,上述代码示例中使用了imbalanced-learn库(imblearn),该库提供了一些用于处理不平衡数据集的采样方法。在使用之前,需要先安装imbalanced-learn库,可以通过以下命令进行安装:
pip install imbalanced-learn
上一篇:不平衡数据集的多标签分类
下一篇:不平衡数据集的KNN分类器