Butterworth滤波是一种常用的数字信号滤波方法,它可以用于平滑轨迹数据。贝塞尔平滑轨迹是一种曲线拟合方法,可以用于去除轨迹中的噪声。下面给出了使用Python实现Butterworth滤波和贝塞尔平滑轨迹的示例代码。
Butterworth滤波示例代码:
import numpy as np
from scipy.signal import butter, filtfilt
def butterworth_filter(data, cutoff_freq, sample_rate, order=5):
nyquist_freq = 0.5 * sample_rate
normal_cutoff = cutoff_freq / nyquist_freq
b, a = butter(order, normal_cutoff, btype='low', analog=False)
filtered_data = filtfilt(b, a, data)
return filtered_data
# 示例数据
data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
sample_rate = 10 # 采样率为10Hz
cutoff_freq = 2 # 截止频率为2Hz
# Butterworth滤波
filtered_data = butterworth_filter(data, cutoff_freq, sample_rate)
print(filtered_data)
贝塞尔平滑轨迹示例代码:
from scipy.interpolate import splprep, splev
def bezier_smooth(data, smoothness):
tck, u = splprep([data[:, 0], data[:, 1]], s=smoothness)
smooth_data = np.column_stack(splev(u, tck))
return smooth_data
# 示例数据
data = np.array([[1, 1], [2, 3], [3, 2], [4, 5], [5, 4]])
# 贝塞尔平滑轨迹
smooth_data = bezier_smooth(data, smoothness=0.5)
print(smooth_data)
注意:上述示例代码中使用了NumPy和SciPy库,需要先安装这些库才能运行代码。你可以使用pip install numpy scipy
命令来安装它们。