耿老师教你学Java:图图学JGraphT开源框架第5回
创始人
2025-03-01 09:48:45
0

摘要:图图学JGraphT开源框架是教材《数据结构与算法》-java语言版(清华大学出版社-2024,耿祥义,张跃平)第13章《图论》的课外读物(共计19回25个实例),所以主要围绕教材的内容学习JGraphT开源框架,即学JGraphT开源框架最重要的部分,不是学习JGraphT开源框架的全部内容(JGraphT开源框架封装关于最短路径的算法类就有30多个)。掌握这里的这些内容,也可以让我们在实际项目更加容易地使用图论的算法,这也正是框架的目的。

图图学开源JGraphT开源框架目录如下

第1回《无向图和SimpleGraph 类》 第2回《Graph 接口》 第3回《无向图和BiconnectivityInspector 类》 第4回《有向图和SimpleDirectedGraph类》 第5回《有向图和GabowStrongConnectivityInspector类》 第6回《有向图与AllDirectedPaths类》 第7回《无向网络和SimpleWeightedGraph 类》 第8回《有向网络和SimpleDirectedWeightedGraph类》 第9回《深度优先搜索(DFS)和DepthFirstIterator类》 第10回《广度优先搜索(BFS)和BreadthFirstIterator类》 第11回《最短路径和FloydWarshallShortestPaths类》 第12回《最短路径和DijkstraShortestPath类》 第13回《最短路径和BFSShortestPath类》 第14回《第k短路径和EppsteinKShortestPath类》 第15回《最小生成树和PrimMinimumSpanningTree类》 第16回《拓扑排序和TopologicalOrderIterator类》 第17回《图着色与GreedyColoring类》 第18回《介数和Betweenness Centrality类》 第19回《最大流算法和EdmondsKarpMFImpl类》

这是

图图学开源JGraphT的第5回-《有向图和GabowStrongConnectivityInspector类》,这回学习的主要内容是:

  • 强连通有向图

  • 有向图的强连通分量

  • GabowStrongConnectivityInspector类

一、强连通有向图

二、有向图的强连通分量

有向图的极大强连通子图称为的强连通分量,一个非连通的有向图一定会有多个(不少于一个)强连通分量。任何强连通图的强连通分量只有一个,即自身。下面的图5.1中的有向图有3个连通分量。

第1个强连通分量:([3], [])

第2个强连通分量:([0, 1, 2], [(0,1), (0,2), (1,0), (1,2), (2,0), (2,1)])

第3个强连通分量:([4, 5, 6], [(4,5), (5,6), (6,4)])

三、GabowStrongConnectivityInspector

GabowStrongConnectivityInspector 类继承自 java.lang.Object,类的实例可用于检查一个有向图是否是强连通图、可用于得到非连通的有向图的全部强连通分量。算法遵循 Gabow(2000 年)在《Path-based depth-first search for strong and biconnected components》中提出的 Cheriyan - Mehlhorn/Gabow 算法。该算法的运行时间复杂度为其中 是顶点数,是边数

GabowStrongConnectivityInspector 类的常用方法:

Graph getGraph:

返回底层图。

java.util.List> getStronglyConnectedComponents:

返回图的全部强连通分量。

boolean isStronglyConnected:

如果图是强连通的,则返回 true,否则返回 false。

五、代码与效果

将jgrapht-1.5.2.zip解压后的lib文件夹复制到C:\studyJGrapht,然后在命令行进入开发目录C:\studyJGrapht。(C:\studyJGrapht是作者使用的开发目录,您可以使用任何自己喜欢的开发目录或名称)。

例子5.1 判断有向图5.1是否是强连通,并的得到强连通分量(效果如图5.2)

如下编译运行代码。

C:\studyJGrapht>javac -cplib\*;. Ex5_1.java C:\studyJGrapht>java -cplib\*;. Ex5_1

图5.2 判断有向图是否强连通

Ex5_1.java

importorg.jgrapht.Graph; importorg.jgrapht.graph.DefaultEdge; importorg.jgrapht.graph.SimpleDirectedGraph; importorg.jgrapht.alg.connectivity.GabowStrongConnectivityInspector; importjava.util.Set; importjava.util.List; public classEx5_1{ public static void main(String[] args) { // 创建一个有向图,顶点类型为Integer,边类型为 DefaultEdge Graph graph = new SimpleDirectedGraph<>(DefaultEdge.class); for(inti=0;i<7;i++) { // 添加顶点 graph.addVertex(i); } int[][]a = {{0,1,1,1,0,0,0}, {1,0,1,0,0,0,0}, {1,1,0,1,0,0,0}, {0,0,0,0,0,0,0}, {0,0,0,0,0,1,0}, {0,0,0,0,0,0,1}, {0,0,0,0,1,0,0}}; for(inti=0;i for(intj=0;j0].length;j++){ if(a[i][j]==1) { graph.addEdge(i,j); // 添加边 } } } printVertexAndEdge(graph); // 创建 ConnectivityInspector 实例 GabowStrongConnectivityInspector inspector = new GabowStrongConnectivityInspector<>(graph); // 测试图是否强连通 System.out.println("图是否强连通: "+ inspector.isStronglyConnected); // 获取图的所有强连通分量 List> stronglyConnectedComponents = inspector.getStronglyConnectedComponents; System.out.println("所有强连通分量:"); inti =1; for(Graph component : stronglyConnectedComponents) { System.out.println("第"+i+"个强连通分量:"+component); i++; } } private static void printVertexAndEdge(Graph graph){ // 打印图中的所有顶点 Set allVertex = graph.vertexSet; System.out.println("图中的顶点和边: "+ allVertex+".边:"); // 打印图中的所有边 Set allEdge = graph.edgeSet; for(DefaultEdge edge : allEdge) { Integer source = graph.getEdgeSource(edge); Integer target = graph.getEdgeTarget(edge); System.out.print(source + "->"+ target+"\t"); } System.out.println; } }

相关内容

AI乱象治理,要“打假”也...
AI仿冒孙颖莎、王楚钦、全红婵带货,打的是什么算盘?一条评论引发全...
2025-08-19 09:45:19
锐评|是不是原创不能全由A...
耗时几十个小时绘制的图画、手敲了一下午的剧本,都成了“疑似AI合成...
2025-08-18 20:45:49
微博加码AI搜索,智搜能否...
8月14日,微博发布2025年第二季度财报。二季度微博总营收4.4...
2025-08-18 20:18:55
AI 深度赋能制造业:U9...
当人工智能从“实验室概念”加速走向“产业刚需”,制造业的数智化转型...
2025-08-18 20:17:31
蚂蚁数科向全球开源180万...
生成式AI引发的欺诈风险席卷全球,研究与之对抗的鉴别技术,成为AI...
2025-08-18 15:12:22
虽败犹荣:曼联演绎“内容为...
在这个充满竞争的赛季,曼联与阿森纳的对决成为了球迷们热议的焦点。如...
2025-08-18 13:15:28

热门资讯

原创 2... #春日生活好物种草季#近年来,笔记本电脑市场迎来技术爆发期,尤其在手机厂商跨界入局后,轻薄本在性能、...
AMD锐龙AI 9 HX 37... 2024年6月3日,AMD正式发布全新的锐龙AI 300系列处理器。该系列处理器一经发布就引发大家的...
骁龙本这么猛?联想YOGA A... 在人人都是自媒体的时代,一部手机可以解决出镜拍摄问题,而商务出差、大量码字、图像处理等需求用笔记本则...
5个AI模特生成软件推荐 当前AI模特生成软件市场提供了多样化的解决方案,以下是几款备受推崇的工具: 触站AI:强烈推荐!...
2023年CentOS与Ubu... CentOS与Ubuntu的市场格局与技术特性探讨 在服务器操作系统领域,CentOS与Ubuntu...
苹果macOS 15.1:允许... 苹果公司在其最新的macOS 15.1版本中,推出了一项引人注目的新功能——允许用户将Mac App...
原创 苹... 前言 IQUNIX在做好看的桌面产品上,一直都给我留下非常深刻的印象。而且早期和苹果产品的设计风格...
原创 华... 想在竞争残酷的市场中发力,必须要带来一些激进的卖点,但是随着功能特性的提升,硬件也必须要进行给力才可...
原创 华... 在2024年这个被誉为"AI元年"的关键时刻,随着生成式AI的流行,各家手机厂商都在积极备战AI手机...