随着生成式AI技术的广泛应用,企业面临前所未有的数据治理挑战。根据Gartner最新研究显示,企业需要对数据采取更加谨慎的态度,因为目前大量数据都是由AI生成的。
当前企业对生成式AI的投资热情持续高涨。Gartner调查发现,84%的企业预计今年将增加对生成式AI的投资。然而,这种快速发展也带来了严重的风险:未来的大语言模型很可能被训练在之前模型生成的数据上,从而加剧所谓的"模型坍塌"危险。
针对未验证数据风险,Gartner提出了具体的管理建议。首先,企业应任命AI治理负责人,与数据和分析团队密切合作。其次,需要通过建立跨职能小组改善部门间协作,这些小组应包括网络安全、数据和分析等领域的代表。最后,企业必须更新现有的安全和数据管理政策,以应对AI生成数据带来的新风险。
Gartner预测,到2028年,由于未验证AI生成数据的大量涌现,50%的企业将不得不在数据治理方面采用零信任策略。
"企业再也不能盲目信任数据或假设数据是由人类生成的,"Gartner管理副总裁Chan Wan Fui在声明中表示。"随着AI生成数据变得无处不在且与人类创建的数据难以区分,采用零信任策略建立身份验证和核实措施对于保护商业和财务成果至关重要。"
Chan指出,让情况变得更加复杂的是,各国政府对AI将采取不同的监管方法。"不同地理区域的要求可能存在显著差异,一些司法管辖区可能会寻求对AI生成内容实施更严格的控制,而其他地区可能会采用更灵活的方法。"
德勤澳大利亚的案例完美说明了AI如何导致数据治理问题。该公司因在最终报告中包含AI生成的错误信息(包括不存在的法律引用)而不得不退还部分政府合同费用。
Q&A
Q1:什么是模型坍塌?为什么会发生?
A:模型坍塌是指大语言模型在训练过程中使用了之前AI模型生成的数据,导致模型性能下降的现象。随着越来越多的企业使用生成式AI,AI生成的内容在网络上大量增加,如果这些数据被用来训练新的模型,就会造成恶性循环。
Q2:零信任数据治理策略包含哪些具体措施?
A:零信任数据治理策略包括三个核心要素:任命专门的AI治理负责人与数据分析团队协作;建立包含网络安全、数据和分析部门代表的跨职能合作小组;更新现有安全和数据管理政策以应对AI生成数据的新风险。
Q3:企业如何识别和验证AI生成的数据?
A:文章提到AI生成数据已经变得与人类创建的数据难以区分,这正是问题的关键所在。企业需要建立身份验证和核实措施,不能再盲目信任数据来源,必须对所有数据采取验证态度。