摩尔线程开源音频理解大模型MooER:38小时训练5000小时数据
创始人
2024-08-23 20:43:28
0

快科技8月23日消息,摩尔线程官方宣布,音频理解大模型“MooER”(摩耳)已经正式开源,并公布在GitHub上:https://github.com/MooreThreads/MooER

目前开源的内容包括推理代码,以及5000小时数据训练的模型,后续还将开源训练代码,以及基于8万小时数据训练的模型。

摩尔线程希望,能够在语音大模型的方法演进和技术落地方面为社区做出贡献。

MooER是业界首个基于国产全功能GPU进行训练和推理的大型开源语音模型,依托摩尔线程的夸娥(KUAE)智算平台,并得益于自研的创新算法和高效计算资源的结合,仅用38个小时,就完成了5000小时音频数据和伪标签的训练。

MooER不仅支持中文和英文的语音识别,还具备中译英的语音翻译能力,并在多个语音识别领域的测试集中,展现出了领先或至少持平的优异表现。

MooER的模型结构包括Encoder、Adapter、Decoder(LLM)三个部分。

其中,Encoder对输入的原始音频进行建模,提取特征并获取表征向量。

Encoder的输出会送到Adapter进一步下采样,使得每120ms音频输出一组音频Embedding。

音频Embedding和文本的Prompt Embedding拼接后,再送进LLM进行对应的下游任务,如语音识别(ASR)、语音翻译(AST)等。

在模型训练阶段,融合了语音模态和文本模态的数据会按以下形式输入到LLM:

摩尔线程使用开源的Paraformer语音编码器、Qwen2-7B-instruct大语言模型,初始化Encoder和LLM模块,并随机初始化Adapter模块。

训练过程中,Encoder始终固定参数,Adapter和LLM会参与训练和梯度更新。

利用自研的夸娥智算平台,摩尔线程使用DeepSpeed框架和Zero2策略,基于BF16精度进行训练和推理。

经实验发现,训练过程中更新LLM参数能够提升最终音频理解任务的效果。

为了提升训练效率,摩尔线程采用了LoRA技术,仅更新2%的LLM参数。具体的模型参数规模如下:

该模型的训练数据MT5K(MT 5000h)由部分开源数据和内部数据构成,内部数据的语音识别标签均是由第三方云服务得到的伪标签。

语音识别的伪标签经过一个文本翻译模型后,得到语音翻译的伪标签,且没有对这些伪标签数据做任何的人工筛选。

具体数据来源和对应的规模如下:

摩尔线程将MooER与多个开源的音频理解大模型进行了对比,包括Paraformer、SenseVoice、Qwen-audio、Whisper-large-v3、SeamlessM4T-v2等。这些模型的训练规模从几万小时到上百万小时不等。

对比结果显示,开源模型MooER-5K在六个中文测试集上的CER(字错误率)达到4.21%,在六个英文测试集的WER(词错误率)为17.98%,与其它开源模型相比,效果更优或几乎持平。

特别是在Covost2 zh2en中译英测试集上,MooER的BLEU分数达到了25.2,显著优于其他开源模型,取得了可与工业水平相媲美的效果。

基于内部8万小时数据训练的MooER-80k模型,在上述中文测试集上的CER达到了3.50%,在英文测试集上的WER到达了12.66%。

与此同时,摩尔线程还得到一些有趣的结论,可以为数据资源和计算资源有限的开发者提供一些建议:

▼Encoder的选择。

分别对比无监督(Self-Supervised Learning)训练的W2v-bert 2.0、半监督(Semi-Supervised Learning)训练的Whisper v3、有监督(Supervised Learning)训练的Paraformer。

采用无监督训练得到的Encoder必须参与到训练过程中,否则模型很难收敛。

综合考虑模型效果、参数量以及训练和推理的效率,选择Paraformer作为Encoder。

▼音频建模粒度很关键。

尝试使用240ms、180ms和120ms的粒度进行建模,并发现这一参数对音频与文本的融合效果具有重要影响,同时会影响模型的最终效果和训练的收敛速度。

经过评估,最终选择每120ms输出一个音频Embedding。

▼快速适应到目标垂类。

仅使用了140h~150h的英文数据进行训练,可以在6个不同来源的英文的测试集上取得一定效果。

同时尝试将任务迁移到语音翻译(AST)领域,取得了很好的效果。

相信这个方法同样也适用于小语种、方言或其它低资源的音频理解任务。

▼LLM对音频理解任务的影响。

在模型训练过程中采用LoRA技术对LLM参数进行更新,可以使训练更快收敛,并且最终取得更好的效果。

同时,音频理解任务上的效果也会随着基础LLM效果提升而提升。

更多技术细节,请参考技术文档:

https://arxiv.org/pdf/2408.05101

相关内容

星巴克中国加强AI投入为了...
在星巴克中国跟并购财团谈判如火如荼进行的当下,星巴克中国又有新动作...
2025-09-18 20:15:35
山东移动济宁分公司5G+A...
大众网记者 刘迪 通讯员 孙新茂 济宁报道 今年以来,山东移动济宁...
2025-09-18 19:46:20
聚合话题剧透|阿里云汽车峰...
论坛名称 云智引擎·全栈驱动 2025 阿里云汽车行业峰会 论坛时...
2025-09-18 19:24:47
AI短剧现象级爆火,投资热...
AI对短剧制作全流程渗透已经实现,但仍处于萌芽阶段,这意味着未来还...
2025-09-18 19:23:15
首个AI纳米递送平台Nan...
央广网北京9月18日消息(记者 雷妍)“纳米已经是现在进行时,并不...
2025-09-18 19:21:19
9月18日盛达资源跌5.2...
证券之星消息,9月18日盛达资源(000603)跌5.24%,收盘...
2025-09-18 18:46:09

热门资讯

原创 2... #春日生活好物种草季#近年来,笔记本电脑市场迎来技术爆发期,尤其在手机厂商跨界入局后,轻薄本在性能、...
AMD锐龙AI 9 HX 37... 2024年6月3日,AMD正式发布全新的锐龙AI 300系列处理器。该系列处理器一经发布就引发大家的...
5个AI模特生成软件推荐 当前AI模特生成软件市场提供了多样化的解决方案,以下是几款备受推崇的工具: 触站AI:强烈推荐!...
骁龙本这么猛?联想YOGA A... 在人人都是自媒体的时代,一部手机可以解决出镜拍摄问题,而商务出差、大量码字、图像处理等需求用笔记本则...
2023年CentOS与Ubu... CentOS与Ubuntu的市场格局与技术特性探讨 在服务器操作系统领域,CentOS与Ubuntu...
苹果macOS 15.1:允许... 苹果公司在其最新的macOS 15.1版本中,推出了一项引人注目的新功能——允许用户将Mac App...
原创 苹... 前言 IQUNIX在做好看的桌面产品上,一直都给我留下非常深刻的印象。而且早期和苹果产品的设计风格...
原创 华... 想在竞争残酷的市场中发力,必须要带来一些激进的卖点,但是随着功能特性的提升,硬件也必须要进行给力才可...
原创 华... 在2024年这个被誉为"AI元年"的关键时刻,随着生成式AI的流行,各家手机厂商都在积极备战AI手机...