AI 推理能力大“翻车”!苹果最新论文:LLM只是复杂的模式匹配,而不是真正的逻辑推理
创始人
2024-10-13 16:25:01
0

苹果的研究员 Mehrdad Farajtabar 等人最近发表了一篇论文,对大型语言模型 (LLM) 的推理能力提出了尖锐的质疑,他认为,LLM 的“推理” 能力,其实只是复杂的模式匹配,不堪一击!

论文作者研究了包括 Llama、Phi、Gemma、Mistral 等开源模型,以及 GPT-4o 和 o1 系列等闭源模型。需要指出的是,在 OpenAI 发布 GSM8K 的三年里,模型的性能有了显著提升,从 GPT-3 (175B) 的 35% 提升到了现在 30 亿参数模型的 85% 以上,更大的模型甚至超过了 95%。但 Farajtabar 认为,这并不能证明 LLM 的推理能力真的提高了

为了测试 LLM 的数学推理能力的极限,Farajtabar 和他的团队开发了一个名为 GSM-Symbolic的新工具,它可以根据 GSM8K 测试集创建符号模板,从而能够生成大量实例并设计可控实验。他们生成了 50 个独特的 GSM-Symbolic 集合,这些集合本质上就像 GSM8K 示例,但具有不同的值和名称

GSM8K 是 “Grade School Math 8K” 的缩写,是一个用来评估数学问题解决能力的数据集。这个数据集主要包含小学级别的数学题目(大约 8,000 道题目),通常用于训练和测试机器学习模型,特别是在自然语言处理领域的模型如何处理和解决数学问题

实验结果,令人大跌眼镜:

1.当前 GSM8K 的准确率并不可靠!不同模型在 GSM8K 上的表现差异巨大,例如 Llama 8B 的得分在 70% 到 80% 之间,Phi-3 的得分在 75% 到 90% 之间,等等。对于大多数模型,在 GSM-Symbolic 上的平均性能低于在 GSM8K 上的平均性能

2.所谓的 LLM 推理能力不堪一击!LLM 对专有名词和数字的更改非常敏感,这说明它们并没有真正理解数学概念。就像一个小学生,如果我们只是更改了数学测试题中的人名,他的分数就会下降 10% 吗?显然不会

3.随着问题难度的增加 (M1 → Symbolic → P1 → P2)。引入了 GSM-Symbolic 的三个新变体来研究模型行为:删除一个分句(GSM-M1)、增加一个分句(GSM-P1)或增加两个分句(GSM-P2),模型的性能下降,方差上升,这意味着模型的可靠性越来越差

4.引入 GSM-NoOp 后,模型性能断崖式下跌!GSM-NoOp 是在 GSM-Symbolic 的基础上,添加了一个看似相关但不影响整体推理的子句。所有模型,包括 o1 模型,都表现出了显著的性能下降。这说明,即使是强大的 o1 模型,也无法真正理解数学问题的逻辑结构

5.即使是 OpenAI 的 o1 系列模型,也无法完全避免这些问题。 o1-preview 虽然有所改进,但仍然会犯一些低级错误,例如无法理解“现在”和“去年”的区别,这可能是因为训练数据中包含了“通货膨胀”的模式,模型只是简单地模仿了这种模式

Farajtabar 认为,

LLM 的这些表现,更好地解释是复杂的模式匹配,而不是真正的逻辑推理。 即使我们增加数据、参数和计算量,或者使用更好的训练数据,也只是得到了“更好的模式匹配器”,而不是“更好的推理器”

Denny Zhou (谷歌 DeepMind 的 LLM 推理团队负责人) 也参与了讨论,他指出:

“这项工作的一个关键发现是:向 GSM8k 问题添加不相关的上下文会导致 LLM 无法解决这些问题,正如我们在 ICML 2023 年的论文‘大型语言模型很容易被不相关的上下文分散注意力’ 中所证明的那样。提示构建的差异在我看来仍然很有趣。”

Yuandong Tian (Meta AI 的研究科学家总监) 也表达了他的观点:

“核心问题是:1️⃣凭借我们的领域知识,我们可以构建权重,使 LLM 在特定问题中进行良好的推理;2️⃣然而,梯度下降可能无法学习到这样的权重;3️⃣我们仍然依赖梯度下降,因为它为许多领域带来了魔力——如果它在其他领域变得愚蠢,我们也无能为力。”

结论

总的来说,这篇论文研究结果没有在包括 Llama、Phi、Gemma 和 Mistral 等开源模型,以及最近的 OpenAI GPT-4o 和 o1 系列等领先闭源模型在内的语言模型中,找到任何形式推理的证据。他们的行为可以用复杂的模式匹配来更好地解释——如此脆弱,以至于更改名称都会使结果改变约 10%!我们可以扩展数据、参数和计算量——或者为 Phi-4、Llama-4、GPT-5 使用更好的训练数据。但这可能只会产生“更好的模式匹配器”,而不是“更好的推理器”

本文作者:opencat,文章来源:AI寒武纪,原文标题:《AI 推理能力大“翻车”!苹果最新论文:LLM只是复杂的模式匹配,而不是真正的逻辑推理》。

*免责声明:文章内容仅供参考,不构成投资建议

*风险提示:股市有风险,入市需谨慎

相关内容

AI进化速递 | 马斯克推...
①百度AI眼镜将于11月1日预售; ②MiniMax发布Hailu...
2025-10-28 21:45:21
AI推理独角兽Firewo...
钛媒体App 10月28日消息,人工智能推理初创公司Firewor...
2025-10-28 21:16:42
美航母摔飞机是“电磁攻击”...
10月26日,美国海军在南海摔了两架飞机。下午2时45分左右,一架...
2025-10-28 20:15:04
科大讯飞“AI+智能硬件”...
智能硬件正从传统的屏幕交互向人工智能原生界面转变,这一变革为行业带...
2025-10-28 19:15:02
剑指英伟达?高通杀入AI芯...
AI芯片战场硝烟再起,又有巨头搅局! 高通最新宣布进军人工智能芯片...
2025-10-28 12:18:31
以AI治AI推动智能向善 ...
目前,AI的应用愈发广泛,在视频制作领域其效率之高,画面十分逼真,...
2025-10-28 12:17:01

热门资讯

原创 2... #春日生活好物种草季#近年来,笔记本电脑市场迎来技术爆发期,尤其在手机厂商跨界入局后,轻薄本在性能、...
AMD锐龙AI 9 HX 37... 2024年6月3日,AMD正式发布全新的锐龙AI 300系列处理器。该系列处理器一经发布就引发大家的...
5个AI模特生成软件推荐 当前AI模特生成软件市场提供了多样化的解决方案,以下是几款备受推崇的工具: 触站AI:强烈推荐!...
骁龙本这么猛?联想YOGA A... 在人人都是自媒体的时代,一部手机可以解决出镜拍摄问题,而商务出差、大量码字、图像处理等需求用笔记本则...
2023年CentOS与Ubu... CentOS与Ubuntu的市场格局与技术特性探讨 在服务器操作系统领域,CentOS与Ubuntu...
苹果macOS 15.1:允许... 苹果公司在其最新的macOS 15.1版本中,推出了一项引人注目的新功能——允许用户将Mac App...
原创 苹... 前言 IQUNIX在做好看的桌面产品上,一直都给我留下非常深刻的印象。而且早期和苹果产品的设计风格...
原创 华... 想在竞争残酷的市场中发力,必须要带来一些激进的卖点,但是随着功能特性的提升,硬件也必须要进行给力才可...
原创 华... 在2024年这个被誉为"AI元年"的关键时刻,随着生成式AI的流行,各家手机厂商都在积极备战AI手机...